A001276 Smallest k such that the product of q/(q-1) over the primes from prime(n) to prime(n+k-1) is greater than 2.
2, 3, 7, 15, 27, 41, 62, 85, 115, 150, 186, 229, 274, 323, 380, 443, 509, 577, 653, 733, 818, 912, 1010, 1114, 1222, 1331, 1448, 1572, 1704, 1845, 1994, 2138, 2289, 2445, 2609, 2774, 2948, 3127, 3311, 3502, 3699, 3900, 4112, 4324, 4546, 4775, 5016, 5255, 5493
Offset: 1
Keywords
Examples
Every odd abundant number has at least 3 distinct prime factors, and 945 = 3^3 * 5 * 7 has exactly 3, so a(2) = 3. - _Jianing Song_, Apr 13 2021
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..650
- Karl K. Norton, Remarks on the number of factors of an odd perfect number, Acta Arith., 6 (1961), 365-374.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n], r = 1, k = 0}, While[r <= 2, r *= p/(p - 1); p = NextPrime[p]; k++]; k]; Array[a, 50] (* Amiram Eldar, Jul 12 2019 *)
-
PARI
a(n)=my(pr=1.,k=0);forprime(p=prime(n),default(primelimit),pr*=p/(p-1);k++;if(pr>2,return(k))) \\ Charles R Greathouse IV, May 09 2011
Formula
a(n) = li(prime(n)^2) + O(n^2/exp((log n)^(4/7 - e))) for any e > 0.
a(n) = pi(A001275(n)) - n + 1. - Amiram Eldar, Jul 12 2019
Extensions
Comment, formula, program, and new definition from Charles R Greathouse IV, May 10 2011
Comments