This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001283 #24 Feb 03 2022 00:32:10 %S A001283 6,12,15,20,24,28,30,35,40,45,42,48,54,60,66,56,63,70,77,84,91,72,80, %T A001283 88,96,104,112,120,90,99,108,117,126,135,144,153,110,120,130,140,150, %U A001283 160,170,180,190,132,143,154,165,176,187,198,209,220,231,156,168,180 %N A001283 Triangle read by rows, in which row n consists of n(n+m) for m = 1 .. n-1. %C A001283 With a different offset: triangle read by rows: t(n, m) = T(n+1, m) = (n+1)(n+m+1) = radius of C-excircle of Pythagorean triangle with sides a=(n+1)^2-m^2, b=2*(n+1)*m and c=(n+1)^2+m^2. - _Floor van Lamoen_, Aug 21 2001 %H A001283 T. D. Noe, <a href="/A001283/b001283.txt">Rows n = 2..100, flattened</a> %F A001283 T(n, m) = n*(n+m), n-1 >= m >= 1. %e A001283 The triangle T(n, m) begins: %e A001283 n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... %e A001283 2: 6 %e A001283 3: 12 15 %e A001283 4: 20 24 28 %e A001283 5: 30 35 40 45 %e A001283 6: 42 48 54 60 66 %e A001283 7: 56 63 70 77 84 91 %e A001283 8: 72 80 88 96 104 112 120 %e A001283 9: 90 99 108 117 126 135 144 153 %e A001283 10: 110 120 130 140 150 160 170 180 190 %e A001283 11: 132 143 154 165 176 187 198 209 220 231 %e A001283 12: 156 168 180 192 204 216 228 240 252 264 276 %e A001283 13: 182 195 208 221 234 247 260 273 286 299 312 325 %e A001283 14: 210 224 238 252 266 280 294 308 322 336 350 364 378 %e A001283 15: 240 255 270 285 300 315 330 345 360 375 390 405 420 435 %e A001283 ... %e A001283 [Reformatted and extended by _Wolfdieter Lang_, Dec 02 2014] %e A001283 ---------------------------------------------------------------- %t A001283 Flatten[Table[n*(n+m), {n, 2, 10}, {m, n-1}]] (* _T. D. Noe_, Jun 27 2012 *) %Y A001283 Cf. A003991, A063929, A063930. %Y A001283 Row sums are in A085788. Central column is A033581. %K A001283 nonn,easy,tabl %O A001283 2,1 %A A001283 _N. J. A. Sloane_ %E A001283 Edited comment by _Wolfdieter Lang_, Dec 02 2014