cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001300 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.

This page as a plain text file.
%I A001300 #40 Apr 18 2017 07:02:35
%S A001300 1,1,1,1,1,2,2,2,2,2,4,4,4,4,4,6,6,6,6,6,9,9,9,9,9,13,13,13,13,13,18,
%T A001300 18,18,18,18,24,24,24,24,24,31,31,31,31,31,39,39,39,39,39,50,50,50,50,
%U A001300 50,62,62,62,62,62,77,77,77
%N A001300 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.
%C A001300 Number of partitions of n into parts 1, 5, 10, 25, and 50. - _Joerg Arndt_, May 10 2014
%C A001300 a(n) = A001299(n) for n < 50; a(n) = A169718(n) for n < 100. - _Reinhard Zumkeller_, Dec 15 2013
%D A001300 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
%D A001300 G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 1 and 2.
%H A001300 T. D. Noe, <a href="/A001300/b001300.txt">Table of n, a(n) for n = 0..10000</a>
%H A001300 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=176">Encyclopedia of Combinatorial Structures 176</a>
%H A001300 <a href="/index/Mag#change">Index entries for sequences related to making change.</a>
%H A001300 <a href="/index/Rec#order_91">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1).
%F A001300 G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
%p A001300 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50));
%t A001300 CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 65} ], x ]
%o A001300 (Haskell)
%o A001300 a001300 = p [1,5,10,25,50] where
%o A001300    p _          0 = 1
%o A001300    p []         _ = 0
%o A001300    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
%o A001300 -- _Reinhard Zumkeller_, Dec 15 2013
%o A001300 (PARI) a(n)=floor(((n\5)^4+38*(n\5)^3+476*(n\5)^2+2185*(n\5)+3735)/2400+(n\5+1)*(-1)^(n\5)/160+(n\5\5+1)*[0,0,1,0,-1][n\5%5+1]/10) \\ _Tani Akinari_, May 10 2014
%Y A001300 Cf. A001299, A169718, A000008.
%K A001300 nonn,easy
%O A001300 0,6
%A A001300 _N. J. A. Sloane_, Mar 15 1996