cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001309 Order of real Clifford group L_n connected with Barnes-Wall lattices in dimension 2^n.

Original entry on oeis.org

2, 16, 2304, 5160960, 178362777600, 96253116206284800, 819651496316379542323200, 110857799304670627788849414144000, 238987988705420266773820308079698247680000
Offset: 0

Views

Author

Keywords

Crossrefs

2^(2n+2) times order of Chevalley group D_n (2) (cf. A001308). Twice A014115. See also A014116, A003956 (for the complex group).
Cf. A100221.

Programs

  • Maple
    2^(n^2+n+2) * (2^n - 1) * product('2^(2*i)-1','i'=1..n-1);
  • Mathematica
    a[0] = 2; a[n_] := 2^(n^2+n+2) * (2^n-1) * Product[2^(2*i)-1, {i, 1, n-1}]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jul 16 2015, after Maple *)
  • Python
    from math import prod
    def A001309(n): return 2 if n == 0 else ((1<Chai Wah Wu, Jun 20 2022

Formula

From Amiram Eldar, Jul 06 2025: (Start)
a(n) = 2^(n^2+n+2) * (2^n-1) * Product_{k=1..n-1} (2^(2*k)-1).
a(n) ~ c * 2^(2*n^2+n+2), where c = A100221. (End)

A144545 a(n) = 2^(n*(n-1))*(2^n + 1)*Product_{i=1..n-1} (4^i - 1).

Original entry on oeis.org

2, 3, 60, 25920, 197406720, 25015379558400, 51615733565620224000, 1718194449153210615595008000, 918817155086936330770931156779008000, 7877103854727828347931810809383874168094720000, 1081561598265935342583934931877242782978883444539392000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Maple
    g:=m->2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m+1);
  • Mathematica
    a[n_] := 2^(n*(n-1))*(2^n + 1) * Product[4^i - 1, {i, 1, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A144545(n): return ((1<Chai Wah Wu, Jun 20 2022

Formula

a(n) ~ c * 2^(2*n^2-n), where c = A100221. - Amiram Eldar, Jul 07 2025
Showing 1-2 of 2 results.