A339094 Number of (unordered) ways of making change for n US Dollars using the current US denominations of $1, $2, $5, $10, $20, $50 and $100 bills.
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740, 793, 828, 881, 916
Offset: 0
Examples
a(5) is 4 because 1+1+1+1+1 = 2+1+1+1 = 2+2+1 = 5.
Links
Crossrefs
Programs
-
Mathematica
f[n_] := Length@ IntegerPartitions[n, All, {1, 2, 5, 10, 20, 50, 100}]; Array[f, 75, 0] (* or *) CoefficientList[ Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50) (1 - x^100)), {x, 0, 75}], x] (* or *) Table[ Length@ FrobeniusSolve[{1, 2, 5, 10, 20, 50, 100}, n], {n, 0, 75}] (* much slower *)
-
PARI
coins(v[..])=my(x='x); prod(i=1, #v, 1/(1-x^v[i])) Vec(coins(1, 2, 5, 10, 20, 50, 100)+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
Formula
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)*(1-x^100)).
Comments