cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001334 Number of n-step self-avoiding walks on hexagonal [ =triangular ] lattice.

Original entry on oeis.org

1, 6, 30, 138, 618, 2730, 11946, 51882, 224130, 964134, 4133166, 17668938, 75355206, 320734686, 1362791250, 5781765582, 24497330322, 103673967882, 438296739594, 1851231376374, 7812439620678, 32944292555934, 138825972053046
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

References

  • A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 459.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    mo={{2, 0},{-1, 1},{-1, -1},{-2, 0},{1, -1},{1, 1}}; a[0]=1;
    a[tg_, p_:{{0, 0}}] := Block[{e, mv = Complement[Last[p]+# & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg-1, Append[p, e]], {e, mv}]]];
    a /@ Range[0, 6]
    (* Robert FERREOL, Nov 28 2018; after the program of Giovanni Resta in A001411 *)
  • Python
    def add(L,x):
        M=[y for y in L];M.append(x)
        return(M)
    plus=lambda L,M : [x+y for x,y in zip(L,M)]
    mo=[[2,0],[-1,1],[-1, -1],[-2,0],[1,-1],[1, 1]]
    def a(n,P=[[0, 0]]):
        if n==0: return(1)
        mv1 = [plus(P[-1],x) for x in mo]
        mv2=[x for x in mv1 if x not in P]
        if n==1: return(len(mv2))
        else: return(sum(a(n-1,add(P,x)) for x in mv2))
    [a(n) for n in range(11)]
    # Robert FERREOL, Dec 11 2018