cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001371 Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is allowed.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 8, 16, 24, 42, 69, 124, 208, 378, 668, 1214, 2220, 4110, 7630, 14308, 26931, 50944, 96782, 184408, 352450, 675180, 1296477, 2493680, 4805388, 9272778, 17919558, 34669600, 67156800, 130215996, 252741255, 490984464, 954629662, 1857545298
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence, in two entries, N0045 and N0285).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A276550.

Programs

  • Maple
    with(numtheory); A001371 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 0; for d in divisors(n) do s := s+mobius(d)*A000029(n/d); od; RETURN(s); fi; end;
  • Mathematica
    a29[n_] := a29[n] = (s = If[OddQ[n], 2^((n-1)/2) , 2^(n/2 - 2) + 2^(n/2 - 1)]; a29[0] = 1; Do[s = s + EulerPhi[d]*2^(n/d)/(2*n), {d, Divisors[n]}]; s); a[n_] := Sum[ MoebiusMu[d]*a29[n/d], {d, Divisors[n]}]; a[0] = 1; Table[ a[n], {n, 0, 34}] (* Jean-François Alcover, Oct 04 2011 *)
    mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; ReplacePart[CoefficientList[Series[gf[x,2],{x,0,mx}],x],1->1] (* Herbert Kociemba, Nov 28 2016 *)
  • Python
    from sympy import divisors, totient, mobius
    def a000029(n):
        return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
    def a(n):
        return 1 if n<1 else sum(mobius(d)*a000029(n//d) for d in divisors(n))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{ d divides n } mu(d)*A000029(n/d).
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, for n>0, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)

Extensions

More terms from Christian G. Bower
Entry revised by N. J. A. Sloane, Jun 10 2012