This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001392 M4637 N1981 #72 Jan 02 2022 09:48:48 %S A001392 1,9,54,273,1260,5508,23256,95931,389367,1562275,6216210,24582285, %T A001392 96768360,379629720,1485507600,5801732460,22626756594,88152205554, %U A001392 343176898988,1335293573130,5193831553416,20198233818840,78542105700240,305417807763705 %N A001392 a(n) = 9*binomial(2n,n-4)/(n+5). %C A001392 Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. _Zoran Sunic_ reference) - _Benoit Cloitre_, Oct 07 2003 %C A001392 Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - _Herbert Kociemba_, May 24 2004 %C A001392 Number of standard tableaux of shape (n+4,n-4). - _Emeric Deutsch_, May 30 2004 %D A001392 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001392 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001392 T. D. Noe, <a href="/A001392/b001392.txt">Table of n, a(n) for n = 4..200</a> %H A001392 Richard K. Guy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6. %H A001392 Athanasios Papoulis, <a href="/A000108/a000108_8.pdf">A new method of inversion of the Laplace transform</a>, Quart. Appl. Math., Vol. 14 (1957), pp. 405-414. [Annotated scan of selected pages] %H A001392 Athanasios Papoulis, <a href="http://www.jstor.org/stable/43636019">A new method of inversion of the Laplace transform</a>, Quart. Applied Math., Vol. 14 (1957), pp. 405-414. %H A001392 John Riordan, <a href="https://doi.org/10.1090/S0025-5718-1975-0366686-9">The distribution of crossings of chords joining pairs of 2n points on a circle</a>, Math. Comp., Vol. 29, No. 129 (1975), pp. 215-222. %H A001392 Zoran Sunic, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v10i1n5">Self-Describing Sequences and the Catalan Family Tree</a>, Electronic Journal of Combinatorics, Vol. 10 (2003), Article #N5. %F A001392 Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - _Philippe Deléham_, Feb 03 2004 %F A001392 Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - _Milan Janjic_, Jul 08 2010 %F A001392 a(n) = A214292(2*n-1,n-5) for n > 4. - _Reinhard Zumkeller_, Jul 12 2012 %F A001392 D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Jun 20 2013 %F A001392 From _Ilya Gutkovskiy_, Jan 22 2017: (Start) %F A001392 E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x). %F A001392 a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End) %F A001392 From _Amiram Eldar_, Jan 02 2022: (Start) %F A001392 Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270. %F A001392 Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End) %e A001392 G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ... %p A001392 A001392:=n->9*binomial(2*n,n-4)/(n+5): seq(A001392(n), n=4..40); # _Wesley Ivan Hurt_, Apr 11 2017 %t A001392 Table[9*Binomial[2n,n-4]/(n+5),{n,4,30}] (* _Harvey P. Dale_, Mar 03 2011 *) %o A001392 (PARI) a(n)=9*binomial(n+n,n-4)/(n+5) \\ _Charles R Greathouse IV_, Jul 31 2011 %Y A001392 First differences are in A026015. %Y A001392 A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072. %Y A001392 Cf. A000108, A000245, A002057, A000344, A003517, A000588, A003518, A003519, A001622. %K A001392 nonn,easy %O A001392 4,2 %A A001392 _N. J. A. Sloane_ %E A001392 More terms from _Harvey P. Dale_, Mar 03 2011