cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001412 Number of n-step self-avoiding walks on cubic lattice.

Original entry on oeis.org

1, 6, 30, 150, 726, 3534, 16926, 81390, 387966, 1853886, 8809878, 41934150, 198842742, 943974510, 4468911678, 21175146054, 100121875974, 473730252102, 2237723684094, 10576033219614, 49917327838734, 235710090502158, 1111781983442406, 5245988215191414, 24730180885580790, 116618841700433358, 549493796867100942, 2589874864863200574, 12198184788179866902, 57466913094951837030, 270569905525454674614
Offset: 0

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-339.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    mo = {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 0}, {0, 0, 1}, {0, 0, -1}}; a[0] = 1;
    a[tg_, p_: {{0, 0, 0}}] := Block[{e, mv = Complement[Last[p] + # & /@ mo, p]},
    If[tg == 1, Return[Length@mv],Sum[a[tg - 1, Append[p, e]], {e, mv}]]];
    a /@ Range[0, 8]
    (* Robert FERREOL, Nov 30 2018, after the program of Giovanni Resta in A001411 *)
  • Python
    def add(L,x):
        M=[y for y in L];M.append(x)
        return(M)
    plus=lambda L,M : [x+y for x,y in zip(L,M)]
    mo=[[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]]
    def a(n,P=[[0,0,0]]):
        if n==0: return(1)
        mv1 = [plus(P[-1],x) for x in mo]
        mv2=[x for x in mv1 if x not in P]
        if n==1: return(len(mv2))
        else: return(sum(a(n-1,add(P,x)) for x in mv2))
    [a(n) for n in range(8)]
    # Robert FERREOL, Nov 30 2018