cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

This page as a plain text file.
%I A001423 M3550 N1438 #72 Feb 16 2025 08:32:23
%S A001423 1,1,4,18,126,1160,15973,836021,1843120128,52989400714478,
%T A001423 12418001077381302684
%N A001423 Number of semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
%D A001423 David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
%D A001423 R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
%D A001423 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001423 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001423 A. de Vries, <a href="http://haegar.fh-swf.de/Seminare/Genome/Archiv/languages.pdf">Formal Languages: An Introduction</a>
%H A001423 Andreas Distler, <a href="http://hdl.handle.net/10023/945">Classification and Enumeration of Finite Semigroups</a>, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010).
%H A001423 Andreas Distler and Tom Kelsey, <a href="http://hpc.gap-system.org/Preprints/DK-AISC08-cr2.pdf">The Monoids of Order Eight and Nine</a>, in Intelligent Computer Mathematics, Lecture Notes in Computer Science, Volume 5144/2008, Springer-Verlag. [From _N. J. A. Sloane_, Jul 10 2009]
%H A001423 A. Distler and T. Kelsey, <a href="http://arxiv.org/abs/1301.6023">The semigroups of order 9 and their automorphism groups</a>, arXiv preprint arXiv:1301.6023 [math.CO], 2013.
%H A001423 Andreas Distler, Chris Jefferson, Tom Kelsey, and Lars Kotthoff, <a href="https://doi.org/10.1007/978-3-642-33558-7_63">The Semigroups of Order 10</a>, in: M. Milano (Ed.), Principles and Practice of Constraint Programming, 18th International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012, Proceedings (LNCS, volume 7514), pp. 883-899, Springer-Verlag Berlin Heidelberg 2012.
%H A001423 Remigiusz Durka and Kamil Grela, <a href="https://arxiv.org/abs/1911.12814">On the number of possible resonant algebras</a>, arXiv:1911.12814 [hep-th], 2019.
%H A001423 G. E. Forsythe, <a href="https://doi.org/10.1090/S0002-9939-1955-0069814-7">SWAC computes 126 distinct semigroups of order 4</a>, Proc. Amer. Math. Soc. 6, (1955). 443-447.
%H A001423 H. Juergensen and P. Wick, <a href="http://dx.doi.org/10.1007/BF02194655">Die Halbgruppen von Ordnungen <= 7</a>, Semigroup Forum, 14 (1977), 69-79.
%H A001423 H. Juergensen and P. Wick, <a href="/A001423/a001423.pdf">Die Halbgruppen von Ordnungen <= 7</a>, annotated and scanned copy.
%H A001423 Daniel J. Kleitman, Bruce L. Rothschild and Joel H. Spencer, <a href="https://doi.org/10.1090/S0002-9939-1976-0414380-0">The number of semigroups of order n</a>, Proc. Amer. Math. Soc., 55 (1976), 227-232.
%H A001423 R. J. Plemmons, <a href="/A001423/a001423_2.pdf">There are 15973 semigroups of order 6</a> (annotated and scanned copy)
%H A001423 Eric Postpischil <a href="https://groups.google.com/forum/?hl=en#!msg/sci.math/nU-hg-FFSFo/iIB3Lul1sAEJ">Associativity Problem</a>, Posting to sci.math newsgroup, May 21 1990.
%H A001423 S. Satoh, K. Yama, and M. Tokizawa, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN001263501">Semigroups of order 8</a>, Semigroup Forum 49 (1994), 7-29.
%H A001423 N. J. A. Sloane, <a href="/A001329/a001329.jpg">Overview of A001329, A001423-A001428, A258719, A258720.</a>
%H A001423 T. Tamura, <a href="/A001329/a001329.pdf">Some contributions of computation to semigroups and groupoids</a>, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
%H A001423 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semigroup.html">Semigroup.</a>
%H A001423 <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a>
%F A001423 a(n) = (A027851(n) + A029851(n))/2.
%Y A001423 Cf. A001426, A023814, A058107, A058123, A151823.
%K A001423 nonn,hard,more,nice
%O A001423 0,3
%A A001423 _N. J. A. Sloane_
%E A001423 a(9) added by _Andreas Distler_, Jan 12 2011
%E A001423 a(10) from Distler et al. 2012, added by _Andrey Zabolotskiy_, Nov 08 2018