cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001428 Number of inverse semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

This page as a plain text file.
%I A001428 M1489 N0586 #47 Jun 03 2024 14:20:17
%S A001428 1,2,5,16,52,208,911,4637,26422,169163,1198651,9324047,78860687,
%T A001428 719606005,7035514642
%N A001428 Number of inverse semigroups of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
%D A001428 S. Satoh, K. Yama, and M. Tokizawa, Semigroups of order 8, Semigroup Forum 49 (1994), 7-29.
%D A001428 H. Juergensen and P. Wick, Die Halbgruppen von Ordnungen <= 7, Semigroup Forum, 14 (1977), 69-79.
%D A001428 R. J. Plemmons, Cayley Tables for All Semigroups of Order Less Than 7. Department of Mathematics, Auburn Univ., 1965.
%D A001428 R. J. Plemmons, There are 15973 semigroups of order 6, Math. Algor., 2 (1967), 2-17; 3 (1968), 23.
%D A001428 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001428 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A001428 M. V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries, World Scientific, 1998. [From _Jonathan Vos Post_, Mar 08 2010]
%D A001428 G. B. Preston, "Inverse semi-groups". Journal of the London Mathematical Society 29: 396-403. [From _Jonathan Vos Post_, Mar 08 2010]
%D A001428 V. V. Wagner (1952). "Generalised groups". Proceedings of the USSR Academy of Sciences 84: 1119-1122. (Russian) English translation. [From _Jonathan Vos Post_, Mar 08 2010]
%H A001428 Joao Araujo and Michael Kinyon, <a href="http://arxiv.org/abs/1003.4028">An elegant 3-basis for inverse semigroups</a>, March 21, 2010. [From _Jonathan Vos Post_, Mar 23 2010]
%H A001428 Andreas Distler, <a href="http://hdl.handle.net/10023/945">Classification and Enumeration of Finite Semigroups</a>, A Thesis Submitted for the Degree of PhD, University of St Andrews (2010).
%H A001428 Luna Elliott, Alex Levine, and James Mitchell, <a href="https://arxiv.org/abs/2405.19825">E-disjunctive inverse semigroups</a>, arXiv:2405.19825 [math.GR], 2024. See p. 3.
%H A001428 H. Juergensen and P. Wick, <a href="/A001423/a001423.pdf">Die Halbgruppen von Ordnungen <= 7</a>, annotated and scanned copy.
%H A001428 Martin E. Malandro, <a href="http://arxiv.org/abs/1312.7192">Enumeration of finite inverse semigroups</a>, arXiv:1312.7192 [math.CO]
%H A001428 R. J. Plemmons, <a href="/A001423/a001423_2.pdf">There are 15973 semigroups of order 6</a> (annotated and scanned copy)
%H A001428 N. J. A. Sloane, <a href="/A001329/a001329.jpg">Overview of A001329, A001423-A001428, A258719, A258720.</a>
%H A001428 T. Tamura, <a href="/A001329/a001329.pdf">Some contributions of computation to semigroups and groupoids</a>, pp. 229-261 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. (Annotated and scanned copy)
%H A001428 Wikipedia, <a href="https://en.wikipedia.org/wiki/Inverse_semigroup">Inverse semigroup</a>
%H A001428 <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a>
%Y A001428 Cf. A234843 (commutative inverse semigroups), A234844 (inverse monoids), A234845 (commutative inverse monoids).
%K A001428 nonn,nice,hard,more
%O A001428 1,2
%A A001428 _N. J. A. Sloane_
%E A001428 a(8) and a(9) from _Andreas Distler_, Jan 17 2011
%E A001428 Added more terms (from the Malandro reference), _Joerg Arndt_, Dec 30 2013