This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001430 M1187 N0458 #28 May 06 2018 13:14:53 %S A001430 0,1,1,2,4,9,21,56,148,428,1305,4191,14140,50159,185987,720298, %T A001430 2905512,12180208,52951701,238253067,1107432714,5308573473, %U A001430 26202267612,132977762151,692996060768 %N A001430 Number of graphs with n nodes and n-2 edges. %D A001430 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146. %D A001430 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001430 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001430 Sean A. Irvine, <a href="/A001430/b001430.txt">Table of n, a(n) for n = 1..40</a> %H A001430 M. L. Stein and P. R. Stein, <a href="http://dx.doi.org/10.2172/4180737">Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points</a>. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967 %e A001430 There are 4 graphs with 5 nodes and 3 edges. %t A001430 (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n-2], {n, 2, 25}] (* _Robert G. Wilson v_ *) %Y A001430 Cf. A008406, where this is a diagonal. %K A001430 nonn,nice,easy %O A001430 1,4 %A A001430 _N. J. A. Sloane_ %E A001430 More terms from _Vladeta Jovovic_, Jan 13 2000