cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001438 Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.

This page as a plain text file.
%I A001438 #90 Sep 03 2025 00:49:14
%S A001438 1,2,3,4,1,6,7,8
%N A001438 Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.
%C A001438 By convention, a(0) = a(1) = infinity.
%C A001438 Parker and others conjecture that a(10) = 2.
%C A001438 It is also known that a(11) = 10, a(12) >= 5.
%C A001438 It is known that a(n) >= 2 for all n > 6, disproving a conjecture by Euler that a(4k+2) = 1 for all k. - _Jeppe Stig Nielsen_, May 13 2020
%D A001438 CRC Handbook of Combinatorial Designs, 1996, pp. 113ff.
%D A001438 S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999, Chapter 8.
%D A001438 E. T. Parker, Attempts for orthogonal latin 10-squares, Abstracts Amer. Math. Soc., Vol. 12 1991 #91T-05-27.
%D A001438 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1997, p. 58.
%H A001438 Anonymous, <a href="http://web.archive.org/web/20071019111222/http://hypo.ge-dip.etat-ge.ch/www/math/gif/grecolatind.png">Order-10 Greco-Latin square</a>.
%H A001438 Thomas Bloom, <a href="https://www.erdosproblems.com/724">Problem 724</a>, Erdős Problems.
%H A001438 R. C. Bose and S. S. Shrikhande, <a href="http://www.pnas.org/cgi/reprint/45/5/734.pdf">On The Falsity Of Euler's Conjecture About The Non-Existence Of Two Orthogonal Latin Squares Of Order 4t+2</a>, Proc. Nat. Acad. Sci., 1959 45 (5) 734-737.
%H A001438 R. Bose, S. Shrikhande, and E. Parker, <a href="https://doi.org/10.4153/CJM-1960-016-5">Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture</a>, Canadian Journal of Mathematics, 12 (1960), 189-203.
%H A001438 C. J. Colbourn and J. H. Dinitz, <a href="http://www.emba.uvm.edu/~jdinitz/preprints/molssurv.pdf">Mutually Orthogonal Latin Squares: A Brief Survey of Constructions</a>, preprint, Journal of Statistical Planning and Inference, Volume 95, Issues 1-2, 1 May 2001, Pages 9-48.
%H A001438 M. Dettinger, <a href="https://web.archive.org/web/20090313020431/http://swiss2.whosting.ch/mdetting/eulersquare.html">Euler's Square</a>
%H A001438 David Joyner and Jon-Lark Kim, <a href="http://dx.doi.org/10.1007/978-0-8176-8256-9_3">Kittens, Mathematical Blackjack, and Combinatorial Codes</a>, Chapter 3 in Selected Unsolved Problems in Coding Theory, Applied and Numerical Harmonic Analysis, Springer, 2011, pp. 47-70, DOI: 10.1007/978-0-8176-8256-9_3.
%H A001438 Numberphile, <a href="https://www.youtube.com/watch?v=HuIrUeODtVQ">Euler squares</a>, YouTube video, 2020.
%H A001438 E. T. Parker, <a href="http://www.pnas.org/cgi/reprint/45/6/859.pdf">Orthogonal Latin Squares</a>, Proc. Nat. Acad. Sci., 1959 45 (6) 859-862.
%H A001438 E. Parker-Woodruff, <a href="https://web.archive.org/web/20070613155923/http://www2.msstate.edu/~eaddy/html/etparker.htm">Greco-Latin Squares Problem</a>
%H A001438 Tony Phillips, <a href="http://www.math.stonybrook.edu/~tony/whatsnew/column/latin-squaresII-0901/latinII3.html">Mutually Orthogonal Latin Squares (MOLS)</a>, Latin Squares in Practice and in Theory II.
%H A001438 N. Rao, <a href="http://bhavana.org.in/shrikhande-eulers-spoiler-turns-100/">Shrikhande, "Euler's Spoiler", Turns 100</a>, Bhāvanā, The mathematics magazine, Volume 1, Issue 4, 2017.
%H A001438 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulersGraeco-RomanSquaresConjecture.html">Euler's Graeco-Roman Squares Conjecture</a>
%H A001438 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graeco-Latin_square">Graeco-Latin square</a>.
%H A001438 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%F A001438 a(n) <= n-1 for all n>1. - _Tom Edgar_, Apr 27 2015
%F A001438 a(p^k) = p^k-1 for all primes p and k>0. - _Tom Edgar_, Apr 27 2015
%F A001438 a(n) = A107431(n,n) - 2. - _Floris P. van Doorn_, Sep 10 2019
%Y A001438 Cf. A287695, A328873.
%K A001438 nonn,hard,more,nice,changed
%O A001438 2,2
%A A001438 _N. J. A. Sloane_