This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001472 M1292 N0495 #63 Aug 30 2025 09:20:13 %S A001472 1,1,2,4,16,56,256,1072,6224,33616,218656,1326656,9893632,70186624, %T A001472 574017536,4454046976,40073925376,347165733632,3370414011904, %U A001472 31426411211776,328454079574016,3331595921852416,37125035407900672,400800185285464064,4744829049220673536 %N A001472 Number of degree-n permutations of order dividing 4. %D A001472 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001472 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001472 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10. %H A001472 Alois P. Heinz, <a href="/A001472/b001472.txt">Table of n, a(n) for n = 0..570</a> (first 201 terms from T. D. Noe) %H A001472 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=25">Encyclopedia of Combinatorial Structures 25</a> (Dead link) %H A001472 Vladimir Victorovich Kruchinin, <a href="https://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010. %H A001472 L. Moser and M. Wyman, <a href="https://doi.org/10.4153/CJM-1955-021-8">On solutions of x^d = 1 in symmetric groups</a>, Canad. J. Math., 7 (1955), 159-168. %F A001472 E.g.f.: exp(x + x^2/2 + x^4/4). %F A001472 D-finite with recurrence: a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(n) = a(n-1) + (n-1)*a(n-2) + (n^3-6*n^2+11*n-6)*a(n-4) for n>3. - H. Palsdottir (hronn07(AT)ru.is), Sep 19 2008 %F A001472 a(n) = n!*Sum_{k=1..n} (1/k!)*Sum_{j=floor((4*k-n)/3)..k} binomial(k,j) * binomial(j,n-4*k+3*j) * (1/2)^(n-4*k+3*j)*(1/4)^(k-j), n>0. - _Vladimir Kruchinin_, Sep 07 2010 %F A001472 a(n) ~ n^(3*n/4)*exp(n^(1/4)-3*n/4+sqrt(n)/2-1/8)/2 * (1 - 1/(4*n^(1/4)) + 17/(96*sqrt(n)) + 47/(128*n^(3/4))). - _Vaclav Kotesovec_, Aug 09 2013 %p A001472 spec := [S, {S = Set(Union(Cycle(Z, card = 1), Cycle(Z, card = 2), Cycle(Z, card = 4)))}, labeled]; seq(combstruct[count](spec, size = n), n = 0 .. 23); # _David Radcliffe_, Aug 29 2025 %t A001472 n = 23; CoefficientList[Series[Exp[x+x^2/2+x^4/4], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* _Jean-François Alcover_, May 18 2011 *) %o A001472 (Maxima) a(n):=n!*sum(sum(binomial(k,j)*binomial(j,n-4*k+3*j)*(1/2)^(n-4*k+3*j)*(1/4)^(k-j),j,floor((4*k-n)/3),k)/k!,k,1,n); /* _Vladimir Kruchinin_, Sep 07 2010 */ %o A001472 (PARI) my(N=33, x='x+O('x^N)); egf=exp(x+x^2/2+x^4/4); Vec(serlaplace(egf)) /* _Joerg Arndt_, Sep 15 2012 */ %o A001472 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 14 2019 %o A001472 (Sage) m = 30; T = taylor(exp(x + x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 14 2019 %Y A001472 Cf. A000085, A001470, A053495. %Y A001472 Column k=4 of A008307. %K A001472 nonn,nice,easy,changed %O A001472 0,3 %A A001472 _N. J. A. Sloane_ and _J. H. Conway_