cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001476 Numbers that are not the sum of distinct positive cubes.

This page as a plain text file.
%I A001476 #55 Jul 14 2025 06:19:00
%S A001476 2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,29,30,
%T A001476 31,32,33,34,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,
%U A001476 56,57,58,59,60,61,62,63,66,67,68,69,70,71,74,75,76,77,78,79,80
%N A001476 Numbers that are not the sum of distinct positive cubes.
%C A001476 Complement of A003997.
%C A001476 There are 85 terms below 100, 793 terms below 1000, but only 2765 terms below 10^4, and only 23 more up to the largest term a(2788)=12758. - _M. F. Hasler_, Feb 25 2012
%C A001476 Indices k such that A279329(k) = 0. - _Vaclav Kotesovec_, Sep 22 2017
%H A001476 T. D. Noe, <a href="/A001476/b001476.txt">Table of n, a(n) for n = 1..2788</a> (complete sequence)
%H A001476 R. E. Dressler and T. Parker, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0327652-1">12,758</a>, Math. Comp. 28 (1974), 313-314.
%H A001476 R. Sprague, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002380951&amp;IDDOC=24044">Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen</a>, Math. Z. 51, (1948). 466-468.
%H A001476 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>
%t A001476 Cubes[ n_ ] := Block[ {A, i}, A = {0}; If[ n>0, Do[ A = Union[ A, A + i*i*i ], {i, n} ]; ]; Return[ A ]; ]; Q = Complement[ Table[ i, {i, 1, 12760} ], Cubes[ 23 ] ]
%o A001476 (PARI) select( is_A001476(n,m=n)={m^3>n&&m=sqrtnint(n,3); n!=m^3&&!while(m>1, is_A001476(n-m^3, m--)||return)}, [1..77]) \\ _M. F. Hasler_, Apr 21 2020
%Y A001476 Cf. A001422, A003997, A279329, A279486.
%K A001476 nonn,fini,full
%O A001476 1,1
%A A001476 Jeff Adams (jeff.adams(AT)byu.net)
%E A001476 Definition clarified by _Jeppe Stig Nielsen_, Jan 27 2015