This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001486 M4502 N1906 #25 Sep 05 2023 01:21:22 %S A001486 1,-8,28,-56,62,0,-148,328,-419,280,140,-728,1232,-1336,848,224,-1582, %T A001486 2688,-3072,2408,-742,-1568,3836,-5264,5306,-3744,924,2576,-5686,7792, %U A001486 -8092,6272,-2751,-1848,6008,-9296,10556,-9800,6692,-2240,-3206,8168,-11524 %N A001486 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^8 in powers of x. %D A001486 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001486 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001486 Alois P. Heinz, <a href="/A001486/b001486.txt">Table of n, a(n) for n = 8..10000</a> %H A001486 H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440. %H A001486 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %F A001486 a(n) = [x^n]( QPochhammer(-x) - 1 )^8. - _G. C. Greubel_, Sep 04 2023 %p A001486 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A001486 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A001486 end: %p A001486 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A001486 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A001486 end: %p A001486 a:= n-> b(n, 8): %p A001486 seq(a(n), n=8..50); # _Alois P. Heinz_, Feb 07 2021 %t A001486 nmax=50; CoefficientList[Series[(Product[(1 -(-x)^j), {j,nmax}] -1)^8, {x,0,nmax}], x]//Drop[#,8] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A001486 Drop[CoefficientList[Series[(QPochhammer[-x] -1)^8, {x,0,102}], x], 8] (* _G. C. Greubel_, Sep 04 2023 *) %o A001486 (Magma) %o A001486 m:=102; %o A001486 R<x>:=PowerSeriesRing(Integers(), m); %o A001486 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^8 )); // _G. C. Greubel_, Sep 04 2023 %o A001486 (SageMath) %o A001486 from sage.modular.etaproducts import qexp_eta %o A001486 m=100; k=8; %o A001486 def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k %o A001486 def A001486_list(prec): %o A001486 P.<x> = PowerSeriesRing(QQ, prec) %o A001486 return P( f(k,x) ).list() %o A001486 a=A001486_list(m); a[k:] # _G. C. Greubel_, Sep 04 2023 %o A001486 (PARI) my(N=55,x='x+O('x^N)); Vec((eta(-x)-1)^8) \\ _Joerg Arndt_, Sep 05 2023 %Y A001486 Cf. A001482 - A001485, A001487, A001488, A047638 - A047649, A047654, A047655, A341243. %K A001486 sign %O A001486 8,2 %A A001486 _N. J. A. Sloane_ %E A001486 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021