This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001487 M4618 N1971 #23 Sep 05 2023 01:20:41 %S A001487 1,-9,36,-84,117,-54,-177,540,-837,755,-54,-1197,2535,-3204,2520,-246, %T A001487 -3150,6426,-8106,7011,-2844,-3549,10359,-15120,15804,-11403,2574, %U A001487 8610,-18972,25425,-25824,18954,-6165,-10080,25101,-35262,37799,-31374,17379,1929 %N A001487 Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^9 in powers of x. %D A001487 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001487 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001487 Alois P. Heinz, <a href="/A001487/b001487.txt">Table of n, a(n) for n = 9..10000</a> %H A001487 H. Gupta, <a href="https://doi.org/10.1112/jlms/s1-39.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433-440. %H A001487 H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy) %F A001487 a(n) = [x^n]( QPochhammer(-x) - 1 )^9. - _G. C. Greubel_, Sep 04 2023 %p A001487 g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d] %p A001487 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A001487 end: %p A001487 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), %p A001487 (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A001487 end: %p A001487 a:= n-> b(n, 9): %p A001487 seq(a(n), n=9..48); # _Alois P. Heinz_, Feb 07 2021 %t A001487 nmax=48; CoefficientList[Series[(Product[(1 - (-x)^j), {j,nmax}] -1)^9, {x,0,nmax}], x]//Drop[#,9] & (* _Ilya Gutkovskiy_, Feb 07 2021 *) %t A001487 Drop[CoefficientList[Series[(QPochhammer[-x] -1)^9, {x,0,102}], x], 9] (* _G. C. Greubel_, Sep 04 2023 *) %o A001487 (Magma) %o A001487 m:=102; %o A001487 R<x>:=PowerSeriesRing(Integers(), m); %o A001487 Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^9 )); // _G. C. Greubel_, Sep 04 2023 %o A001487 (SageMath) %o A001487 from sage.modular.etaproducts import qexp_eta %o A001487 m=100; k=9; %o A001487 def f(k,x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k %o A001487 def A001487_list(prec): %o A001487 P.<x> = PowerSeriesRing(QQ, prec) %o A001487 return P( f(k,x) ).list() %o A001487 a=A001487_list(m); a[k:] # _G. C. Greubel_, Sep 04 2023 %o A001487 (PARI) my(N=55,x='x+O('x^N)); Vec((eta(-x)-1)^9) \\ _Joerg Arndt_, Sep 05 2023 %Y A001487 Cf. A001482 - A001486, A001488, A047638 - A047649, A047654, A047655, A341243. %K A001487 sign %O A001487 9,2 %A A001487 _N. J. A. Sloane_ %E A001487 Definition and offset edited by _Ilya Gutkovskiy_, Feb 07 2021