cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).

This page as a plain text file.
%I A001497 #187 Feb 16 2025 08:32:23
%S A001497 1,1,1,3,3,1,15,15,6,1,105,105,45,10,1,945,945,420,105,15,1,10395,
%T A001497 10395,4725,1260,210,21,1,135135,135135,62370,17325,3150,378,28,1,
%U A001497 2027025,2027025,945945,270270,51975,6930,630,36,1,34459425,34459425,16216200,4729725,945945,135135,13860,990,45,1
%N A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).
%C A001497 The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
%C A001497 With the related Sheffer associated polynomials defined by Carlitz as
%C A001497 B(0,x) = 1
%C A001497 B(1,x) = x
%C A001497 B(2,x) = x + x^2
%C A001497 B(3,x) = 3 x + 3 x^2 + x^3
%C A001497 B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
%C A001497 ... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - _Tom Copeland_, Feb 10 2008
%C A001497 Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - _Paul Barry_, Jul 27 2010
%C A001497 From _Vladimir Kruchinin_, Mar 18 2011: (Start)
%C A001497 For B(n,k){...} the Bell polynomial of the second kind we have
%C A001497 B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
%C A001497 The expansions of the first few rows are:
%C A001497 1/sqrt(1-2*x);
%C A001497 1/(1-2*x)^(3/2), 1/(1-2*x);
%C A001497 3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
%C A001497 15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
%C A001497 Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 19 2016
%C A001497 Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - _Tom Copeland_, Oct 04 2016
%C A001497 The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - _Tom Copeland_, Oct 10 2016
%C A001497 a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - _David desJardins_, Feb 23 2019
%C A001497 From _Jianing Song_, Nov 29 2021: (Start)
%C A001497 The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
%C A001497 {P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
%C A001497 (i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
%C A001497 (ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
%C A001497 Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - _Jianing Song_, Nov 30 2023
%D A001497 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
%H A001497 T. D. Noe, <a href="/A001497/b001497.txt">Rows n = 0..50 of triangle, flattened</a>
%H A001497 Peter Bala, <a href="/A035342/a035342_Bala.txt">Generalized Dobinski formulas</a>
%H A001497 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry1/barry97r2.html">Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms</a>, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.
%H A001497 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a>
%H A001497 E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
%H A001497 O. Frink and H. L. Krall, <a href="http://dx.doi.org/10.1090/S0002-9947-1949-0028473-1">A new class of orthogonal polynomials</a>, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
%H A001497 E. Grosswald, <a href="http://dx.doi.org/10.1007/BFb0063135">Bessel Polynomials</a>, Lecture Notes Math. vol. 698 1978 p. 18.
%H A001497 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3.
%H A001497 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A001497 B. Leclerc, <a href="http://dx.doi.org/10.1016/0012-365X(95)00138-M">Powers of staircase Schur functions and symmetric analogues of Bessel polynomials</a>, Discrete Math., 153 (1996), 213-227.
%H A001497 Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 19.
%H A001497 Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Schork/schork2.html">The Generalized Stirling and Bell Numbers Revisited</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
%H A001497 Toufik Mansour, Matthias Schork and Mark Shattuck, <a href="http://dx.doi.org/10.1016/j.aml.2012.02.009">On the Stirling numbers associated with the meromorphic Weyl algebra</a>, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
%H A001497 W. Mlotkowski and A. Romanowicz, <a href="http://www.math.uni.wroc.pl/~pms/files/33.2/Article/33.2.19.pdf">A family of sequences of binomial type</a>, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
%H A001497 Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019.
%H A001497 Feng Qi and Bai-Ni Guo, <a href="https://doi.org/10.1002/9781119414421.ch5">"Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers"</a>, Mathematical Analysis and Applications : Selected Topics (2018), Wiley, Ch. 5, 101-133.
%H A001497 Feng Qi, X.-T. Shi and F.-F. Liu, <a href="https://www.researchgate.net/publication/280884520">Several formulas for special values of the Bell polynomials of the second kind and applications</a>, Preprint 2015.
%H A001497 Alexander Stoimenow, <a href="https://doi.org/10.1016/S0012-365X(99)00347-7">On the number of chord diagrams</a>, Discr. Math. 218 (2000), 209-233. Lemma 2.2.
%H A001497 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BesselPolynomial.html">Bessel Polynomial</a>
%H A001497 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>
%F A001497 a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
%F A001497 a(n, m)= 0, n<m; a(n, -1) := 0; a(0, 0)= 1; a(n, m) = (2*n-m-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 0 (from Grosswald p. 23, (19)).
%F A001497 E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
%F A001497 G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - _Paul Barry_, Jan 29 2009
%F A001497 T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - _Paul Barry_, Mar 18 2011
%F A001497 Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - _Peter Bala_, Nov 25 2011
%F A001497 The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - _Peter Bala_, Jun 23 2014
%e A001497 Triangle begins
%e A001497         1,
%e A001497         1,       1,
%e A001497         3,       3,      1,
%e A001497        15,      15,      6,      1,
%e A001497       105,     105,     45,     10,     1,
%e A001497       945,     945,    420,    105,    15,    1,
%e A001497     10395,   10395,   4725,   1260,   210,   21,   1,
%e A001497    135135,  135135,  62370,  17325,  3150,  378,  28,  1,
%e A001497   2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
%e A001497 Production matrix begins
%e A001497        1,      1,
%e A001497        2,      2,      1,
%e A001497        6,      6,      3,     1,
%e A001497       24,     24,     12,     4,     1,
%e A001497      120,    120,     60,    20,     5,    1,
%e A001497      720,    720,    360,   120,    30,    6,   1,
%e A001497     5040,   5040,   2520,   840,   210,   42,   7,  1,
%e A001497    40320,  40320,  20160,  6720,  1680,  336,  56,  8, 1,
%e A001497   362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
%e A001497 This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
%e A001497 - _Paul Barry_, Mar 18 2011
%p A001497 f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
%p A001497 row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
%t A001497 m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* _Jean-François Alcover_, Sep 20 2011 *)
%t A001497 y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Mar 01 2013 *)
%o A001497 (PARI) T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* _Ralf Stephan_ */
%o A001497 (PARI) {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* _Michael Somos_, Oct 03 2006 */
%o A001497 (Haskell)
%o A001497 a001497 n k = a001497_tabl !! n !! k
%o A001497 a001497_row n = a001497_tabl !! n
%o A001497 a001497_tabl = [1] : f [1] 1 where
%o A001497    f xs z = ys : f ys (z + 2) where
%o A001497      ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
%o A001497 -- _Reinhard Zumkeller_, Jul 11 2014
%o A001497 (Magma) /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 12 2015
%o A001497 (Sage) # uses[bell_matrix from A264428]
%o A001497 # Adds a column 1,0,0,0, ... at the left side of the triangle.
%o A001497 bell_matrix(lambda n: A001147(n), 9) # _Peter Luschny_, Jan 19 2016
%Y A001497 Reflected version of A001498 which is considered the main entry.
%Y A001497 Other versions of this same triangle are given in A144299, A111924 and A100861.
%Y A001497 Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
%Y A001497 Cf. A104556 (matrix inverse). A039683, A122850.
%Y A001497 Cf. A245066 (central terms).
%Y A001497 Cf. A054142, A099174, A107102.
%K A001497 nonn,tabl,nice
%O A001497 0,4
%A A001497 _N. J. A. Sloane_