This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001507 M3132 N1270 #39 Jul 28 2017 09:38:08 %S A001507 0,0,0,3,33,338,3580,39525,452865,5354832,65022840,807560625, %T A001507 10224817515,131631305718,1719292293940,22743461653913, %U A001507 304256251541865,4111134671255120,56049154766899216,770325744569310630,10664613057653024586,148625522045319923940 %N A001507 a(n) is the number of c-nets with n+1 vertices and 2n+1 edges, n >= 1. %D A001507 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001507 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001507 Gheorghe Coserea, <a href="/A001507/b001507.txt">Table of n, a(n) for n = 1..203</a> %H A001507 R. C. Mullin and P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via triangulations</a>, J. Combin. Theory, 4 (1968), 259-276. %F A001507 a(n) = A290326(n+1,n). - _Sean A. Irvine_, Sep 29 2015 %o A001507 (PARI) %o A001507 A290326(n,k) = { %o A001507 if (n < 3 || k < 3, return(0)); %o A001507 sum(i=0, k-1, sum(j=0, n-1, %o A001507 (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2* %o A001507 (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - %o A001507 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)))); %o A001507 }; %o A001507 vector(22, n, A290326(n+1,n)) \\ _Gheorghe Coserea_, Jul 28 2017 %Y A001507 Cf. A290326. %K A001507 nonn %O A001507 1,4 %A A001507 _N. J. A. Sloane_ %E A001507 Corrected and extended by _Sean A. Irvine_, Sep 29 2015 %E A001507 Name changed by _Gheorghe Coserea_, Jul 23 2017