This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001508 M4918 N2111 #37 Jul 28 2017 09:38:50 %S A001508 0,0,0,0,13,252,3740,51300,685419,9095856,120872850,1614234960, %T A001508 21697730835,293695935764,4003423965684,54944523689692, %U A001508 758990230992175,10548884795729280,147458773053913268,2072369440050644208,29271357456284966994 %N A001508 a(n) is the number of c-nets with n+1 vertices and 2n+2 edges, n >= 1. %D A001508 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001508 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001508 Gheorghe Coserea, <a href="/A001508/b001508.txt">Table of n, a(n) for n = 1..204</a> %H A001508 R. C. Mullin and P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via triangulations</a>, J. Combin. Theory, 4 (1968), 259-276. %F A001508 a(n) = A290326(n+2,n). - _Gheorghe Coserea_, Jul 28 2017 %o A001508 (PARI) %o A001508 A290326(n,k) = { %o A001508 if (n < 3 || k < 3, return(0)); %o A001508 sum(i=0, k-1, sum(j=0, n-1, %o A001508 (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2* %o A001508 (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - %o A001508 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)))); %o A001508 }; %o A001508 vector(21, n, A290326(n+2,n)) \\ _Gheorghe Coserea_, Jul 28 2017 %Y A001508 Cf. A290326. %K A001508 nonn %O A001508 1,5 %A A001508 _N. J. A. Sloane_ %E A001508 Corrected and extended by _Sean A. Irvine_, Sep 29 2015 %E A001508 Name changed by _Gheorghe Coserea_, Jul 23 2017