A001530 NPN-equivalence classes of threshold functions of exactly n variables.
1, 1, 1, 3, 9, 48, 504, 14188, 1351563
Offset: 0
References
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 20.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
- S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
- S. Muroga, I. Toda and M. Kondo, Majority decision functions of up to six variables, Math. Comp., 16 (1962), 459-472. [Annotated partially scanned copy]
- S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
Crossrefs
Cf. A001529.