This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001536 #33 Aug 15 2025 05:48:31 %S A001536 10,252,736,1462,2430,3640,5092,6786,8722,10900,13320,15982,18886, %T A001536 22032,25420,29050,32922,37036,41392,45990,50830,55912,61236,66802, %U A001536 72610,78660,84952,91486,98262,105280,112540,120042,127786,135772,144000,152470,161182,170136 %N A001536 a(n) = (11*n+1)*(11*n+10). %H A001536 T. D. Noe, <a href="/A001536/b001536.txt">Table of n, a(n) for n = 0..1000</a> %H A001536 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A001536 a(n) = 242*n + a(n-1) with a(0)=10. - _Vincenzo Librandi_, Nov 12 2010 %F A001536 G.f.: -2*(5+111*x+5*x^2)/(x-1)^3. - _R. J. Mathar_, May 30 2022 %F A001536 From _Amiram Eldar_, Feb 20 2023: (Start) %F A001536 a(n) = A017401(n)*A017509(n). %F A001536 Sum_{n>=0} 1/a(n) = cot(Pi/11)*Pi/99. %F A001536 Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/11)*cos(sqrt(85)*Pi/22). %F A001536 Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/11)*cos(sqrt(77)*Pi/22). (End) %F A001536 From _Elmo R. Oliveira_, Oct 25 2024: (Start) %F A001536 E.g.f.: exp(x)*(10 + 121*x*(2 + x)). %F A001536 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End) %t A001536 Table[(11*n + 1)*(11*n + 10), {n, 0, 40}] (* _Amiram Eldar_, Feb 20 2023 *) %o A001536 (PARI) a(n)=(11*n+1)*(11*n+10) \\ _Charles R Greathouse IV_, Jun 16 2017 %Y A001536 Cf. A017401, A017509. %K A001536 nonn,easy %O A001536 0,1 %A A001536 _N. J. A. Sloane_