This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001543 M4091 N1699 #59 Jul 08 2025 16:26:46 %S A001543 1,6,11,71,4691,21982031,483209576974811, %T A001543 233491495280173380882643611671, %U A001543 54518278368171228201482876236565907627201914279213829353891 %N A001543 a(0) = 1, a(n) = 5 + Product_{i=0..n-1} a(i) for n > 0. %C A001543 This is the special case k=5 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - _Seppo Mustonen_, Sep 04 2005 %D A001543 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001543 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001543 Alois P. Heinz, <a href="/A001543/b001543.txt">Table of n, a(n) for n = 0..12</a> %H A001543 A. V. Aho and N. J. A. Sloane, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437. %H A001543 A. V. Aho and N. J. A. Sloane, <a href="/A000058/a000058.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!) %H A001543 S. W. Golomb, <a href="http://www.jstor.org/stable/2311857">On certain nonlinear recurring sequences</a>, Amer. Math. Monthly 70 (1963), 403-405. %H A001543 R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012 %H A001543 S. Mustonen, <a href="http://www.survo.fi/papers/resseq.pdf">On integer sequences with mutual k-residues</a> %H A001543 Seppo Mustonen, <a href="/A000215/a000215.pdf">On integer sequences with mutual k-residues</a> [Local copy] %H A001543 <a href="/index/Aa#AHSL">Index entries for sequences of form a(n+1)=a(n)^2 + ...</a> %F A001543 a(n) = a(n-1) * (a(n-1) - 5) + 5. - _Charles R Greathouse IV_, Dec 09 2011 %F A001543 a(n) ~ c^(2^n), where c = 1.696053774403103324180661918166106455311376345474042496749974632237971081462... . - _Vaclav Kotesovec_, Dec 17 2014 %t A001543 Flatten[{1,RecurrenceTable[{a[1]==6, a[n]==a[n-1]*(a[n-1]-5)+5}, a, {n, 1, 10}]}] (* _Vaclav Kotesovec_, Dec 17 2014 *) %t A001543 Join[{1},NestList[#(#-5)+5&,6,10]] (* _Harvey P. Dale_, Oct 10 2016 *) %o A001543 (PARI) { %o A001543 print1("1, 6"); %o A001543 n=6; %o A001543 m=Mod(5,6); %o A001543 for(i=2,9, %o A001543 n=m.mod+lift(m); %o A001543 m=chinese(m,Mod(5,n)); %o A001543 print1(", "n) %o A001543 ) %o A001543 } \\ _Charles R Greathouse IV_, Dec 09 2011 %Y A001543 Column k=5 of A177888. %K A001543 nonn %O A001543 0,2 %A A001543 _N. J. A. Sloane_ %E A001543 New name from _Alonso del Arte_, Dec 09 2011