This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001555 M4520 N1914 #51 Oct 26 2024 10:17:36 %S A001555 8,36,204,1296,8772,61776,446964,3297456,24684612,186884496, %T A001555 1427557524,10983260016,84998999652,660994932816,5161010498484, %U A001555 40433724284976,317685943157892,2502137235710736,19748255868485844,156142792528260336,1236466399775623332 %N A001555 a(n) = 1^n + 2^n + ... + 8^n. %C A001555 Conjectures for o.g.f.s for this type of sequence appear in the PhD thesis by _Simon Plouffe_. See A001552 for the reference. These conjectures are proved in a link given in A196837. [_Wolfdieter Lang_, Oct 15 2011] %D A001555 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813. %D A001555 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001555 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001555 T. D. Noe and Robert Israel, <a href="/A001555/b001555.txt">Table of n, a(n) for n = 0..1000</a> (n = 0..200 from T. D. Noe) %H A001555 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001555 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=368">Encyclopedia of Combinatorial Structures 368</a> %H A001555 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (36, -546, 4536, -22449, 67284, -118124, 109584, -40320). %F A001555 From _Wolfdieter Lang_, Oct 15 2011 (Start) %F A001555 E.g.f.: (1-exp(8*x))/(exp(-x)-1) = Sum_{j=1..8} exp(j*x) (trivial). %F A001555 O.g.f.: 4*(2-9*x)*(1-27*x+288*x^2-1539*x^3+4299*x^4-5886*x^5+3044*x^6) / Product_{j=1..8} (1-j*x). From the e.g.f. via Laplace transformation. See the proof in a link under A196837. (End) %F A001555 a(n) = A001554(n) + A001018(n). - _Michel Marcus_, Jul 26 2013 %p A001555 seq(add(j^n,j=1..8), n=0..20); # _Robert Israel_, Aug 23 2015 %t A001555 Table[Total[Range[8]^n], {n, 0, 20}] (* _T. D. Noe_, Aug 09 2012 *) %o A001555 (PARI) first(m)=vector(m,n,n--;sum(i=1,8,i^n)) \\ _Anders Hellström_, Aug 23 2015 %Y A001555 Column 8 of array A103438. %Y A001555 Cf. A001018, A001552, A001554, A196837. %K A001555 nonn,easy %O A001555 0,1 %A A001555 _N. J. A. Sloane_ %E A001555 More terms from _Jon E. Schoenfield_, Mar 24 2010