This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001562 M3767 N1537 #58 Feb 16 2025 08:32:24 %S A001562 5,7,19,31,53,67,293,641,2137,3011,268207,1600787 %N A001562 Numbers n such that (10^n + 1)/11 is a prime. %C A001562 The a(10) to a(11) gap represents the largest relative gap seen so far in searching repunits with bases between -12 and 12. On average, there should have been 4 more primes added to this sequence by a(11), instead of just 1. - _Paul Bourdelais_, Feb 11 2010 %D A001562 J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements. %D A001562 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001562 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001562 P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>, 2009. %H A001562 J. Brillhart, <a href="/A001562/a001562.pdf">Letter to N. J. A. Sloane, Aug 08 1970</a> %H A001562 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002. %H A001562 H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A001562 H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7. %H A001562 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a> %H A001562 S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a> %H A001562 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit</a> %H A001562 R. G. Wilson, v, <a href="/A084740/a084740.pdf">Letter to N. J. A. Sloane, circa 1991.</a> %t A001562 Select[Range[3000], PrimeQ[(10^# + 1) / 11] &] (* _Vincenzo Librandi_, Oct 29 2017 *) %o A001562 (PARI) isok(n) = (denominator(p=(10^n+1)/11)==1) && isprime(p); \\ _Michel Marcus_, Oct 29 2017 %Y A001562 Equals 2*A054416 + 1. %Y A001562 Odd terms of A309358. %K A001562 nonn,hard,more %O A001562 1,1 %A A001562 _N. J. A. Sloane_ %E A001562 a(11) corresponds to a probable prime discovered by _Paul Bourdelais_, Feb 11 2010 %E A001562 a(12) corresponds to a probable prime discovered by _Paul Bourdelais_, May 04 2020