This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001568 M2171 N0867 #32 Feb 01 2022 23:30:46 %S A001568 1,-1,-1,2,49,629,6961,38366,-1899687,-133065253,-6482111309, %T A001568 -281940658286,-10702380933551,-247708227641863,14512103549430397, %U A001568 3377044611825908414,433180638973276282801,47474992085447610990231 %N A001568 Related to 3-line Latin rectangles. %D A001568 S. M. Kerawala, The asymptotic number of three-deep Latin rectangles, Bull. Calcutta Math. Soc., 39 (1947), 71-72. %D A001568 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001568 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001568 S. M. Kerawala, <a href="/A000186/a000186.pdf">The asymptotic number of three-deep Latin rectangles</a>, Bull. Calcutta Math. Soc., 39 (1947), 71-72. [Annotated scanned copy] %H A001568 S. M. Kerawala, <a href="/A001569/a001569.pdf">Asymptotic solution of the "Probleme des menages</a>, Bull. Calcutta Math. Soc., 39 (1947), 82-84. [Annotated scanned copy] %H A001568 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %o A001568 (Sage) %o A001568 def A001568(N): %o A001568 a = polygen(QQ, 'a') %o A001568 R = PowerSeriesRing(a.parent(), 't', default_prec=N + 2) %o A001568 t = R.gen() %o A001568 n = 1 / t %o A001568 dico = {0: 1} %o A001568 for k in range(1, N + 1): %o A001568 U = sum(di * t**i / factorial(i) for i, di in dico.items()) %o A001568 U += a * t**k / factorial(k) %o A001568 U = U.O(k + 2) %o A001568 delta = -U+(n-1)*(n**2-2*n+2)/n**2/(n-2)*U(t=1/(n-1))+(n**2-2*n+2)/n**2/(n-1)*U(t=1/(n-2))+(n**2-2*n-2)/n**2/(n-1)/(n-2)**2*U(t=1/(n-3))+2*(n*n-5*n+3)/n**2/(n-1)/(n-2)**2/(n-3)*U(t=1/(n-4))-4/n**2/(n-2)**2/(n-3)/(n-4)*U(t=1/(n-5)) %o A001568 dico[k] = delta[k + 1].numerator().roots()[0][0] %o A001568 return list(dico.values()) %o A001568 # _F. Chapoton_, Jan 01 2022 %K A001568 sign,more %O A001568 1,4 %A A001568 _N. J. A. Sloane_ %E A001568 Signs added by _N. J. A. Sloane_, Jul 23 2015 %E A001568 More terms from _F. Chapoton_, Jan 01 2022