A001572 Related to series-parallel networks.
1, 1, 1, 1, 3, 5, 17, 41, 127, 365, 1119, 3413, 10685, 33561, 106827, 342129, 1104347, 3584649, 11701369, 38374065, 126395259, 417908329, 1386618307, 4615388353, 15407188529, 51569669429, 173033992311, 581905285089, 1961034571967
Offset: 0
References
- J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks (annotated scanned copy)
Crossrefs
Programs
-
Mathematica
max = 29;(* b = A000669 *) b[1] = 1; b[n_] := Module[{s}, s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2]; gf = 2 - Product[(1 - x^n)^b[n], {n, 1, max}] + O[x]^max; CoefficientList[gf, x] (* Jean-François Alcover, Oct 23 2016 *)
Formula
G.f.: 1 - Sum_{k>=1} a(k)*x^k = Product_{n>=1} (1-x^n)^A000669(n).
Comments