This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001623 M3682 N1502 #51 Nov 09 2016 15:03:10 %S A001623 1,4,46,1064,35792,1673792,103443808,8154999232,798030483328, %T A001623 94866122760704,13460459852344064,2246551018310998016, %U A001623 435626600453967929344,97108406689489312301056,24658059294992101453262848,7075100096781964808223653888,2277710095706779480096994066432,817555425148510266964075644059648 %N A001623 Number of 3 X n reduced (normalized) Latin rectangles. %C A001623 A Latin rectangle [L_{n,k}] is called normalized [N_{n,k}] if the first row is (0,1, . . . , n-1), and reduced [R_{n,k}] if the first row is (0,1, . . . , n-1) and the first column is (0,1, . . . , k-1). Then L_{n,k} = n! N_{n,k} = (n! (n-1)! /(n-k)!) R_{n,k}. %D A001623 S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. %D A001623 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001623 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001623 Robert Israel, <a href="/A001623/b001623.txt">Table of n, a(n) for n = 3..254</a> %H A001623 S. M. Kerawala, <a href="/A001623/a001623.pdf">The enumeration of the Latin rectangle of depth three by means of a difference equation</a>, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy] %H A001623 D. S. Stones, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1a1">The many formulas for the number of Latin rectangles</a>, Electron. J. Combin. 17 (2010), A1. %H A001623 D. S. Stones and I. M. Wanless, <a href="http://dx.doi.org/10.1016/j.jcta.2009.03.019">Divisors of the number of Latin rectangles</a>, J. Combin. Theory Ser. A 117 (2010), 204-215. %H A001623 R. J. Stones, S. Lin, X. Liu, G. Wang, <a href="http://dx.doi.org/10.1007/s00373-015-1643-1">On Computing the Number of Latin Rectangles</a>, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1. %H A001623 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %F A001623 a(n) ~ (n-1)!^2/exp(3) ~ 2*Pi*n^(2*n-1)/exp(2*n+3). - _Vaclav Kotesovec_, Sep 08 2016 %e A001623 G.f. = x^3 + 4*x^4 + 46*x^5 + 1064*x^6 + 35792*x^7 + 1673792*x^8 + ... %p A001623 f:= n-> add(n*factorial(n-3)*factorial(i)*simplify(hypergeom([3*i+3, -n+i], [], 1/2))/(2^(-n+i)*factorial(n-i)),i=0..n): %p A001623 map(f, [$3..30]); # _Robert Israel_, Nov 07 2016 %t A001623 Table[Sum[ n (n - 3)! (-1)^j 2^(n -i-j) i!/(n-i-j)! Binomial[3 i + j + 2, j], {i, 0, n}, {j, 0, n - i} ], {n, 3, 25}] (* _Wouter Meeussen_, Oct 27 2013 *) %o A001623 (PARI) A001623 = n->n*(n-3)!*sum(i=0,n,sum(j=0,n-i,(-1)^j*binomial(3*i+j+2,j)<<(n-i-j)/(n-i-j)!)*i!) \\ - _M. F. Hasler_, Oct 27 2013 %Y A001623 Cf. A001009. %K A001623 nonn,nice %O A001623 3,2 %A A001623 _N. J. A. Sloane_ %E A001623 Better description Jul 15 1995 %E A001623 Mathematica program, more terms, better definition, comment and Stones link from _Wouter Meeussen_, Oct 27 2013 %E A001623 Minor corrections by _M. F. Hasler_, Oct 27 2013