cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001664 Quadratic coefficient of the n-th converging polynomial of Weber functions.

Original entry on oeis.org

1, -6, 25, -60, -203, 3710, -21347, -50400, 2465969, -24201342, -14909791, 4154706556, -61829802067, 107889525510, 13926895008805, -296622934827816, 1387504872714793, 80367331405832714, -2381736125794455767, 19480923855903871284, 721535152036700012069, -29550684521199839783538
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001663, A001662 (absolute coefficient)

Programs

  • Maple
    # equation (47)
    prs := proc(r,k)
        if r = 0  then
            1 ;
        elif r = 1  then
            -1+k ; # (38)
        elif r =2 then
            1-3*k+k^2 ;
        end if;
    end proc:
    p := proc(r,s)
        option remember ;
        local k,a,lambda,mu,phi,theta ;
        # theta := 0 ; # valid for Table VII
        phi :=1 : # (30) for theta=0
        a := 1/2 ; # specific in Table VII
        lambda := 2*(a-1) ; # (15)
        mu := (a-1/2)*(a-3/2) ; # (13)
        if r = s then
            return 1; # eq (42)
        elif s > r or s <0 then
            return 0 ;
        elif r <=2 then
            coeff(prs(r,k),k,s) ;
        elif s = 0 then
            # eq (46)
            2*(phi+2)*procname(r,1) -8*procname(r,2)
            +4*(4*r-lambda-2)*procname(r-1,1)
            +2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,0)
            -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,0) ;
            return %/(phi+1) ;
        elif s = 1 then
            # eq (45)
            # note that the 2nd index of the last p is wrong in the publication
            4*(phi+2)*procname(r,2) -24*procname(r,3) # unreadable index is 3
            +8*(4*r-lambda-2)*procname(r-1,2)
            -8*procname(r-1,1)+2*(phi+2)*procname(r-1,0)
            +2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,1)
            -4*(lambda-4*r+4)*procname(r-2,0)
            -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,1) ;
            return %/(phi+1) ;
        elif s= r-1 then
            # eq (43)
            2*(phi+2)*r*procname(r,r) -8*(r-1)*procname(r-1,r-1)
            +2*(phi+2)*procname(r-1,r-2)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,r-1)
            -4*procname(r-2,r-3)-4*(lambda-4*r+4)*procname(r-2,r-2) ;
            return %/(phi+1) ;
        else
            # eq (44)
            2*(s+1)*(phi+2)*procname(r,s+1) -4*(s+1)*(s+2)*procname(r,s+2)
            +4*(4*r-lambda-2)*(s+1)*procname(r-1,s+1)-8*s*procname(r-1,s)
            +2*(phi+2)*procname(r-1,s-1)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,s)
            -4*procname(r-2,s-2)-4*(lambda-4*r+4)*procname(r-2,s-1)
            -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,s) ;
            return %/(phi+1) ;
        end if;
    end proc:
    A001664 := proc(n)
        p(n,2) ;
    end proc:
    seq(A001664(n),n=2..30) ; # R. J. Mathar, Jan 13 2025

A380170 Coefficient [k^1] of Wynn's converging polynomial p_n(k) of Weber functions.

Original entry on oeis.org

1, -3, 7, -5, -83, 637, -1425, -22341, 318149, -1415491, -18988393, 444896699, -3268880739, -35114352579, 1317630731647, -14445395761157, -112227733823435, 7047241310852605, -108366459009937881, -487554173851570053, 61301180146129065101, -1271086841777475748099, -1158631507880606959729
Offset: 1

Views

Author

R. J. Mathar, Jan 14 2025

Keywords

Comments

Corrects a typo (-93) in the version published in 1963, A001663.

Crossrefs

Programs

  • Maple
    #re-using code of A001664
    seq( p(r,1),r=0..12) ;

Formula

a(n) = A380169(n,1).
Showing 1-2 of 2 results.