A001664 Quadratic coefficient of the n-th converging polynomial of Weber functions.
1, -6, 25, -60, -203, 3710, -21347, -50400, 2465969, -24201342, -14909791, 4154706556, -61829802067, 107889525510, 13926895008805, -296622934827816, 1387504872714793, 80367331405832714, -2381736125794455767, 19480923855903871284, 721535152036700012069, -29550684521199839783538
Offset: 2
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- P. Wynn, Converging factors for the Weber parabolic cylinder functions of complex argument, part Ia, part Ib, Proc. Konin. Ned. Akad. Weten., Series A, 66 (1963), 721-754 (two parts). In (45) the factor p_{r-2,2} should read p_{r-2,1}.
- P. Wynn, Converging factors for the Weber parabolic cylinder functions ... [Annotated scan of part 2 only]
Programs
-
Maple
# equation (47) prs := proc(r,k) if r = 0 then 1 ; elif r = 1 then -1+k ; # (38) elif r =2 then 1-3*k+k^2 ; end if; end proc: p := proc(r,s) option remember ; local k,a,lambda,mu,phi,theta ; # theta := 0 ; # valid for Table VII phi :=1 : # (30) for theta=0 a := 1/2 ; # specific in Table VII lambda := 2*(a-1) ; # (15) mu := (a-1/2)*(a-3/2) ; # (13) if r = s then return 1; # eq (42) elif s > r or s <0 then return 0 ; elif r <=2 then coeff(prs(r,k),k,s) ; elif s = 0 then # eq (46) 2*(phi+2)*procname(r,1) -8*procname(r,2) +4*(4*r-lambda-2)*procname(r-1,1) +2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,0) -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,0) ; return %/(phi+1) ; elif s = 1 then # eq (45) # note that the 2nd index of the last p is wrong in the publication 4*(phi+2)*procname(r,2) -24*procname(r,3) # unreadable index is 3 +8*(4*r-lambda-2)*procname(r-1,2) -8*procname(r-1,1)+2*(phi+2)*procname(r-1,0) +2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,1) -4*(lambda-4*r+4)*procname(r-2,0) -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,1) ; return %/(phi+1) ; elif s= r-1 then # eq (43) 2*(phi+2)*r*procname(r,r) -8*(r-1)*procname(r-1,r-1) +2*(phi+2)*procname(r-1,r-2)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,r-1) -4*procname(r-2,r-3)-4*(lambda-4*r+4)*procname(r-2,r-2) ; return %/(phi+1) ; else # eq (44) 2*(s+1)*(phi+2)*procname(r,s+1) -4*(s+1)*(s+2)*procname(r,s+2) +4*(4*r-lambda-2)*(s+1)*procname(r-1,s+1)-8*s*procname(r-1,s) +2*(phi+2)*procname(r-1,s-1)+2*(lambda*(phi+1)-2*(r-1)*phi-4*r)*procname(r-1,s) -4*procname(r-2,s-2)-4*(lambda-4*r+4)*procname(r-2,s-1) -4*(mu-2*lambda*(r-1)+4*(r-1)^2)*procname(r-2,s) ; return %/(phi+1) ; end if; end proc: A001664 := proc(n) p(n,2) ; end proc: seq(A001664(n),n=2..30) ; # R. J. Mathar, Jan 13 2025