cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001667 2n-step polygons on b.c.c. lattice.

This page as a plain text file.
%I A001667 M5364 N2330 #25 Jun 03 2022 01:43:22
%S A001667 96,1776,43776,1237920,37903776,1223681760,41040797376,1416762272736,
%T A001667 50027402384640,1799035070369856
%N A001667 2n-step polygons on b.c.c. lattice.
%C A001667 Number of 2n-step closed self-avoiding walks starting from the origin. - _Bert Dobbelaere_, Jan 16 2019
%D A001667 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001667 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A001667 P. Butera and M. Comi, <a href="https://doi.org/10.1007/BF01608788">Enumeration of the self-avoiding polygons on a lattice by the Schwinger-Dyson equations</a>, Annals of Combinatorics 3, 277-286 (1999); arXiv:<a href="https://arxiv.org/abs/cond-mat/9903297">cond-mat/9903297</a>, 1999.
%H A001667 M. E. Fisher and M. F. Sykes, <a href="http://dx.doi.org/10.1103/PhysRev.114.45">Excluded-volume problem and the Ising model of ferromagnetism</a>, Phys. Rev. 114 (1959), 45-58.
%H A001667 M. F. Sykes et al., <a href="https://doi.org/10.1088/0305-4470/5/5/007">The number of self-avoiding walks on a lattice</a>, J. Phys. A 5 (1972), 661-666.
%H A001667 <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>
%Y A001667 Cf. A001666, A001413, A001337, A038515.
%K A001667 nonn,nice,walk,more
%O A001667 2,1
%A A001667 _N. J. A. Sloane_
%E A001667 a(9)-a(10) from _Bert Dobbelaere_, Jan 16 2019
%E A001667 a(11) from Butera & Comi added by _Andrey Zabolotskiy_, Jun 02 2022