This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001687 M0147 N0059 #63 Apr 13 2022 13:25:16 %S A001687 0,1,0,1,0,1,1,1,2,1,3,2,4,4,5,7,7,11,11,16,18,23,29,34,45,52,68,81, %T A001687 102,126,154,194,235,296,361,450,555,685,851,1046,1301,1601,1986,2452, %U A001687 3032,3753,4633,5739,7085,8771,10838,13404,16577,20489,25348,31327 %N A001687 a(n) = a(n-2) + a(n-5). %C A001687 a(n+1) is the number of compositions of n into parts 2 and 5. [_Joerg Arndt_, Mar 15 2013] %D A001687 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001687 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001687 T. D. Noe, <a href="/A001687/b001687.txt">Table of n, a(n) for n = 0..1000</a> %H A001687 Dorota Bród, <a href="https://doi.org/10.1007/s40590-021-00369-5">On trees with unique locating kernels</a>, Boletín de la Sociedad Matemática Mexicana (2021) Vol. 27, Art. No. 61. %H A001687 T. M. Green, <a href="http://www.jstor.org/stable/2687953">Recurrent sequences and Pascal's triangle</a>, Math. Mag., 41 (1968), 13-21. %H A001687 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=405">Encyclopedia of Combinatorial Structures 405</a> %H A001687 Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A001687 Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992 %H A001687 E. Wilson, <a href="http://www.anaphoria.com/meruone.PDF">The Scales of Mt. Meru</a> %H A001687 R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a> %H A001687 R. Yanco and A. Bagchi, <a href="/A007380/a007380_1.pdf">K-th order maximal independent sets in path and cycle graphs</a>, Unpublished manuscript, 1994. (Annotated scanned copy) %H A001687 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %H A001687 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 1). %F A001687 G.f.: x/(1-x^2-x^5). %F A001687 G.f. A(x) satisfies 1+x^4*A(x) = 1/(1-x^5-x^7-x^9-....). - _Jon Perry_, Jul 04 2004 %F A001687 G.f.: -x/( x^5 - 1 + 5*x^2/Q(0) ) where Q(k) = x + 5 + k*(x+1) - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 15 2013 %p A001687 A001687:=-z/(-1+z**2+z**5); # _Simon Plouffe_ in his 1992 dissertation %t A001687 CoefficientList[Series[x/(1-x^2-x^5),{x,0,60}],x] (* or *) Nest[ Append[#,#[[-5]]+#[[-2]]]&, {0,1,0,1,0}, 60] (* _Harvey P. Dale_, Apr 06 2011 *) %t A001687 LinearRecurrence[{0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}, 100] (* _T. D. Noe_, Aug 09 2012 *) %o A001687 (PARI) a(n)=if(n<0,polcoeff(x^4/(1+x^3-x^5)+x^-n*O(x),-n),polcoeff(x/(1-x^2-x^5)+x^n*O(x),n)) /* _Michael Somos_, Jul 15 2004 */ %o A001687 (Maxima) %o A001687 a(n):=sum(if mod(n-5*k,3)=0 then binomial(k,(5*k-n)/3) else 0,k,1,n); /* _Vladimir Kruchinin_, May 24 2011 */ %Y A001687 Cf. A005686. %K A001687 nonn %O A001687 0,9 %A A001687 _N. J. A. Sloane_, following a suggestion from _Robert G. Wilson v_