This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001691 M4660 N1995 #35 Feb 01 2022 07:12:34 %S A001691 0,1,9,108,3420,114480,7786800,497266560,42616445760,4320959126400, %T A001691 534444478444800,77699101730342400,13282131639801024000 %N A001691 Number of two-element generating sets in the symmetric group S_n. %D A001691 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001691 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001691 J. Denes, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80017-5">Some combinatorial properties of transformations and their connections with the theory of graphs</a>, J. Combin. Theory, 9 (1970), 108-116. %F A001691 a(n) = A071605(n)/2 for n > 2. %o A001691 (GAP) %o A001691 a := function(n) %o A001691 local tom, mu, lens, orders, num, k; %o A001691 tom := TableOfMarks(Concatenation("S",String(n))); %o A001691 if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi; %o A001691 mu := MoebiusTom(tom).mu; %o A001691 lens := LengthsTom(tom); %o A001691 orders := OrdersTom(tom); %o A001691 num := 0; %o A001691 for k in [1 .. Length(lens)] do %o A001691 if IsBound(mu[k]) then %o A001691 num := num + mu[k] * lens[k] * Binomial(orders[k],2); %o A001691 fi; %o A001691 od; %o A001691 return num; %o A001691 end; # _Stephen A. Silver_, Feb 20 2013 %Y A001691 Cf. A071605, A086373. %K A001691 nonn,more %O A001691 1,3 %A A001691 _N. J. A. Sloane_ %E A001691 a(8)-a(9) (derived from A071605) added by _Stephen A. Silver_, Feb 17 2013 %E A001691 a(10)-a(13) added by _Stephen A. Silver_, Feb 20 2013