This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001708 M5095 N2206 #33 Feb 04 2022 08:16:28 %S A001708 1,20,295,4025,54649,761166,11028590,167310220,2664929476,44601786944, %T A001708 784146622896,14469012689040,279870212258064,5667093514231200, %U A001708 119958395537083104,2650594302549806976,61049697873641191296,1463708634867162093312,36482312832434713195776 %N A001708 Generalized Stirling numbers. %C A001708 The asymptotic expansion of the higher order exponential integral E(x,m=5,n=2) ~ exp(-x)/x^5*(1 - 20/x + 295/x^2 - 4025/x^3 + 54649/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - _Johannes W. Meijer_, Oct 20 2009 %D A001708 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001708 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001708 T. D. Noe, <a href="/A001708/b001708.txt">Table of n, a(n) for n = 0..100</a> %H A001708 D. S. Mitrinovic and R. S. Mitrinovic, <a href="http://pefmath2.etf.rs/files/47/77.pdf">Tableaux d'une classe de nombres reliƩs aux nombres de Stirling</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77. %H A001708 Robert E. Moritz, <a href="/A001701/a001701.pdf">On the sum of products of n consecutive integers</a>, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy] %F A001708 E.g.f.: ( log ( 1 - x ))^4 / 24 ( 1 - x )^2. %F A001708 a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+4, 4)*2^k*Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004 %F A001708 If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a - j), then a(n-4) = |f(n,4,2)| for n >= 4. - _Milan Janjic_, Dec 21 2008 %t A001708 With[{nn=20},Drop[CoefficientList[Series[Log[1-x]^4/(24(1-x)^2),{x,0,nn}], x]Range[0,nn]!,4]] (* _Harvey P. Dale_, Oct 24 2011 *) %o A001708 (PARI) my(x='x+O('x^25)); Vec(serlaplace((log(1-x))^4/(24*(1-x)^2))) \\ _Michel Marcus_, Feb 04 2022 %K A001708 nonn %O A001708 0,2 %A A001708 _N. J. A. Sloane_ %E A001708 More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004