This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001714 M5184 N2252 #45 Feb 02 2021 22:00:45 %S A001714 1,25,445,7140,111769,1767087,28699460,483004280,8460980836, %T A001714 154594537812,2948470152264,58696064973000,1219007251826064, %U A001714 26390216795274288,594982297852020288,13955257961738192448,340154857108405040256,8606960634143667938688 %N A001714 Generalized Stirling numbers. %C A001714 The asymptotic expansion of the higher-order exponential integral E(x,m=5,n=3) ~ exp(-x)/x^5*(1 - 25/x + 445/x^2 - 7140/x^3 + 111769/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - _Johannes W. Meijer_, Oct 20 2009 %C A001714 From _Petros Hadjicostas_, Jun 13 2020: (Start) %C A001714 For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and Mitrinovic and Mitrinovic (1962) using slightly different notation. %C A001714 These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. %C A001714 As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_0^0(a,b) = 1, R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m. %C A001714 With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) for n, m >= 0. %C A001714 We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0. %C A001714 For the current sequence, a(n) = R_{n+4}^4(a=-3, b=-1) for n >= 0. (End) %D A001714 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001714 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001714 T. D. Noe, <a href="/A001714/b001714.txt">Table of n, a(n) for n = 0..100</a> %H A001714 D. S. Mitrinovic, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k762d/f996.image.r=1961%20mitrinovic">Sur une classe de nombres reliés aux nombres de Stirling</a>, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.] %H A001714 D. S. Mitrinovic and R. S. Mitrinovic, <a href="https://www.jstor.org/stable/43667130">Tableaux d'une classe de nombres reliés aux nombres de Stirling</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version]. %H A001714 D. S. Mitrinovic and M. S. Mitrinovic, <a href="http://pefmath2.etf.rs/files/47/77.pdf">Tableaux d'une classe de nombres reliés aux nombres de Stirling</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77. %F A001714 a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(k+4, 4) * 3^k * Stirling1(n+4, k+4). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004 %F A001714 If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-4) = |f(n,4,3)| for n >= 4. - _Milan Janjic_, Dec 21 2008 %F A001714 From _Petros Hadjicostas_, Jun 14 2020: (Start) %F A001714 a(n) = [x^4] Product_{r=0}^{n+3} (x + 3 + r) = (Product_{r=0}^{n+3} (r+3)) * Sum_{0 <= i < j < k < m <= n+3} 1/((3+i)*(3+j)*(3+k)*(3+m)). %F A001714 E.g.f.: Sum_{n>=0} a(n)*x^(n+4)/(n+4)! = (log(1 - x))^4/(1 - x)^3/24. %F A001714 Since a(n) = R_{n+4}^4(a=-3, b=-1), A001713(n) = R_{n+3}^3(a=-3,b=-1), A001712(n) = R_{n+2}^2(a=-3, b=-1), and A001711(n) = R_{n+1}^1(a=-3,b=-1), the equation R_{n+4}^4(a=-3,b=-1) = R_{n+3}^3(a=-3,b=-1) + (n+6)*R_{n+3}^4(a=-3,b=-1) implies the following: %F A001714 (i) a(n) = A001713(n) + (n+6)*a(n-1) for n >= 1. %F A001714 (ii) a(n) = A001712(n) + (2*n+11)*a(n-1) - (n+5)^2*a(n-2) for n >= 2. %F A001714 (iii) a(n) = A001711(n) + 3*(n+5)*a(n-1) - (3*n^2+27*n+61)*a(n-2) + (n+4)^3*a(n-3) for n >= 3. %F A001714 (iv) a(n) = (n+2)!/2 + 2*(2*n+9)*a(n-1) - (6*n^2+48*n+97)*a(n-2) + (2*n+7)*(2*n^2+14*n+25)*a(n-3) - (n+3)^4*a(n-4) for n >= 4. %F A001714 (v) By taking the difference a(n) - (n+2)*a(n-1), and using (iv) above, we get a 5th-order linear recurrence with polynomial coefficients of degree at most 5. We omit the details. (End) %t A001714 nn = 24; t = Range[0, nn]! CoefficientList[Series[Log[1 - x]^4/(24*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 4] (* _T. D. Noe_, Aug 09 2012 *) %Y A001714 Cf. A001711, A001712, A001713, A048994, A163931, A163932. %K A001714 nonn %O A001714 0,2 %A A001714 _N. J. A. Sloane_ %E A001714 More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004