This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001723 M5189 N2256 #24 Dec 24 2021 08:17:29 %S A001723 1,26,485,8175,134449,2231012,37972304,668566300,12230426076, %T A001723 232959299496,4623952866312,95644160132976,2060772784375824, %U A001723 46219209678691200,1078100893671811200,26129183717351462400,657337657573760947200,17147815411007234188800 %N A001723 Generalized Stirling numbers. %C A001723 The asymptotic expansion of the higher order exponential integral E(x,m=4,n=5) ~ exp(-x)/x^4*(1 - 26/x + 485/x^2 - 8175/x^3 + 134449/x^4 - 2231012/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - _Johannes W. Meijer_, Oct 20 2009 %D A001723 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001723 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001723 T. D. Noe, <a href="/A001723/b001723.txt">Table of n, a(n) for n = 0..100</a> %H A001723 D. S. Mitrinovic and R. S. Mitrinovic, <a href="http://pefmath2.etf.rs/files/47/77.pdf">Tableaux d'une classe de nombres reliƩs aux nombres de Stirling</a>, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp. %F A001723 a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(3+k, 3)*5^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004 %F A001723 If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,5)|, for n >= 3. - _Milan Janjic_, Dec 21 2008 %t A001723 Table[Sum[(-1)^(n + k)*Binomial[k + 3, 3]*5^k*StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 0, 20}] (* _T. D. Noe_, Aug 10 2012 *) %K A001723 nonn %O A001723 0,2 %A A001723 _N. J. A. Sloane_ %E A001723 More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004