cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001729 List of numbers whose digits contain no loops (version 1).

This page as a plain text file.
%I A001729 #23 Feb 15 2024 01:52:45
%S A001729 1,2,3,4,5,7,11,12,13,14,15,17,21,22,23,24,25,27,31,32,33,34,35,37,41,
%T A001729 42,43,44,45,47,51,52,53,54,55,57,71,72,73,74,75,77,111,112,113,114,
%U A001729 115,117,121,122,123,124,125,127,131,132,133,134,135,137,141,142
%N A001729 List of numbers whose digits contain no loops (version 1).
%C A001729 The digits 0, 6, 8 and 9 contain loops, but 1, 2, 3, 4 (written in "open" style), 5 and 7 do not.
%H A001729 T. D. Noe, <a href="/A001729/b001729.txt">Table of n, a(n) for n = 1..1000</a>
%H A001729 Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
%H A001729 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A001729 Sum_{n>=1} 1/a(n) = 5.427161361994446672956800952211331066904630376796246807177210248900020978222... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Feb 15 2024
%t A001729 Select[Range[150], Intersection[{0, 6, 8, 9}, Union[IntegerDigits[#]]] == {} &] (* _T. D. Noe_, Aug 10 2012 *)
%t A001729 FromDigits/@Flatten[Table[Tuples[{1,2,3,4,5,7},n],{n,3}],1] (* _Harvey P. Dale_, Feb 01 2017 *)
%Y A001729 Cf. A001742 (version 2).
%K A001729 base,nonn,easy
%O A001729 1,2
%A A001729 _N. J. A. Sloane_
%E A001729 Missing 42 and 44 added by _T. D. Noe_, Aug 10 2012