This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001743 #37 Nov 16 2022 14:54:00 %S A001743 0,6,8,9,60,66,68,69,80,86,88,89,90,96,98,99,600,606,608,609,660,666, %T A001743 668,669,680,686,688,689,690,696,698,699,800,806,808,809,860,866,868, %U A001743 869,880,886,888,889,890,896,898,899,900,906,908,909,960,966,968,969 %N A001743 Numbers in which every digit contains at least one loop (version 1). %C A001743 See A001744 for the other version. %C A001743 If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - _Hieronymus Fischer_, May 30 2012 %H A001743 Hieronymus Fischer, <a href="/A001743/b001743.txt">Table of n, a(n) for n = 1..10000</a> %H A001743 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A001743 From _Hieronymus Fischer_, May 30 2012: (Start) %F A001743 a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)). %F A001743 a(1*4^n+1) = 6*10^n. %F A001743 a(2*4^n+1) = 8*10^n. %F A001743 a(3*4^n+1) = 9*10^n. %F A001743 a(n) = 6*10^log_4(n-1) for n=4^k+1, %F A001743 a(n) < 6*10^log_4(n-1), otherwise. %F A001743 a(n) > 10^log_4(n-1) for n>1. %F A001743 a(n) = 6*A007090(n-1), iff the digits of A007090(n-1) are 0 or 1. %F A001743 G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)). %F A001743 Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End) %e A001743 a(1000) = 99896. %e A001743 a(10^4) = 8690099. %e A001743 a(10^5) = 680688699. %t A001743 Union[Flatten[Table[FromDigits/@Tuples[{0,6,8,9},n],{n,3}]]] (* _Harvey P. Dale_, Sep 04 2013 *) %o A001743 (PARI) is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ _Felix Fröhlich_, Sep 09 2019 %Y A001743 Cf. A007090, A046034, A029581, A084984, A017042, A001744, A014261, A014263, A202267, A202268. %K A001743 base,nonn,easy %O A001743 1,2 %A A001743 _N. J. A. Sloane_ %E A001743 Examples added by _Hieronymus Fischer_, May 30 2012