cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001743 Numbers in which every digit contains at least one loop (version 1).

This page as a plain text file.
%I A001743 #37 Nov 16 2022 14:54:00
%S A001743 0,6,8,9,60,66,68,69,80,86,88,89,90,96,98,99,600,606,608,609,660,666,
%T A001743 668,669,680,686,688,689,690,696,698,699,800,806,808,809,860,866,868,
%U A001743 869,880,886,888,889,890,896,898,899,900,906,908,909,960,966,968,969
%N A001743 Numbers in which every digit contains at least one loop (version 1).
%C A001743 See A001744 for the other version.
%C A001743 If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - _Hieronymus Fischer_, May 30 2012
%H A001743 Hieronymus Fischer, <a href="/A001743/b001743.txt">Table of n, a(n) for n = 1..10000</a>
%H A001743 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%F A001743 From _Hieronymus Fischer_, May 30 2012: (Start)
%F A001743 a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)).
%F A001743 a(1*4^n+1) = 6*10^n.
%F A001743 a(2*4^n+1) = 8*10^n.
%F A001743 a(3*4^n+1) = 9*10^n.
%F A001743 a(n) = 6*10^log_4(n-1) for n=4^k+1,
%F A001743 a(n) < 6*10^log_4(n-1), otherwise.
%F A001743 a(n) > 10^log_4(n-1) for n>1.
%F A001743 a(n) = 6*A007090(n-1), iff the digits of A007090(n-1) are 0 or 1.
%F A001743 G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)).
%F A001743 Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End)
%e A001743 a(1000) = 99896.
%e A001743 a(10^4) = 8690099.
%e A001743 a(10^5) = 680688699.
%t A001743 Union[Flatten[Table[FromDigits/@Tuples[{0,6,8,9},n],{n,3}]]] (* _Harvey P. Dale_, Sep 04 2013 *)
%o A001743 (PARI) is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ _Felix Fröhlich_, Sep 09 2019
%Y A001743 Cf. A007090, A046034, A029581, A084984, A017042, A001744, A014261, A014263, A202267, A202268.
%K A001743 base,nonn,easy
%O A001743 1,2
%A A001743 _N. J. A. Sloane_
%E A001743 Examples added by _Hieronymus Fischer_, May 30 2012