This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001765 M4447 N1882 #33 Jan 07 2023 14:48:25 %S A001765 1,7,77,1155,21973,506989,13761937,429853851,15192078027,599551077881, %T A001765 26140497946017,1248134313062231,64783855286002573, %U A001765 3632510833677434324,218845138322691595694,14099918095287618382033,967508237903439910445565,70447525748137979196484589 %N A001765 Coefficients of iterated exponentials. %D A001765 J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. %D A001765 T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. %D A001765 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001765 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001765 T. D. Noe, <a href="/A001765/b001765.txt">Table of n, a(n) for n=1..100</a> %H A001765 P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. %H A001765 T. Hogg and B. A. Huberman, <a href="/A000258/a000258.pdf">Attractors on finite sets: the dissipative dynamics of computing structures</a>, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy) %H A001765 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=303">Encyclopedia of Combinatorial Structures 303</a> %F A001765 E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))). %t A001765 With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jan 07 2023 *) %o A001765 (PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1))); %o A001765 a(n) = T(n, 7); \\ _Seiichi Manyama_, Feb 11 2022 %o A001765 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ _Seiichi Manyama_, Feb 11 2022 %Y A001765 Cf. A003713, A000268, A000310, A000359, A000406. %K A001765 nonn,easy %O A001765 1,2 %A A001765 _N. J. A. Sloane_