A001780 Expansion of 1/((1+x)(1-x)^9).
1, 8, 37, 128, 367, 920, 2083, 4352, 8518, 15792, 27966, 47616, 78354, 125136, 194634, 295680, 439791, 641784, 920491, 1299584, 1808521, 2483624, 3369301, 4519424, 5998876, 7885280, 10270924, 13264896
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
- Index entries for linear recurrences with constant coefficients, signature (8,-27,48,-42,0,42,-48,27,-8,1).
Crossrefs
Programs
-
PARI
Vec(1/(1+x)/(1-x)^9+O(x^99)) \\ Charles R Greathouse IV, Apr 18 2012
Formula
a(n) = 431*n/168 + (-1)^n/512 + 391*n^3/288 + 26011*n^2/10080 + 797*n^4/1920 + 11*n^5/144 + n^6/120 + n^7/2016 + n^8/80640 + 511/512. - R. J. Mathar, Mar 15 2011
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (9 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 4 with offset 0). - Wolfdieter Lang, Aug 10 2017
a(n)+a(n+1) = A000581(n+9) . - R. J. Mathar, Jan 06 2021