This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001781 #27 Apr 21 2025 10:46:22 %S A001781 1,9,46,174,541,1461,3544,7896,16414,32206,60172,107788,186142,311278, %T A001781 505912,801592,1241383,1883167,2803658,4103242,5911763,8395387, %U A001781 11764688,16284112,22282988,30168268,40439192,53704088,70699532,92312108,119603024,153835856,196507709,249384101 %N A001781 Expansion of 1/((1+x)*(1-x)^10). %H A001781 Vincenzo Librandi, <a href="/A001781/b001781.txt">Table of n, a(n) for n = 0..10000</a> %H A001781 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (9,-35,75,-90,42,42,-90,75,-35,9,-1). %F A001781 a(n) = +9*a(n-1) -35*a(n-2) +75*a(n-3) -90*a(n-4) +42*a(n-5) +42*a(n-6) -90*a(n-7) +75*a(n-8) -35*a(n-9) +9*a(n-10) -a(n-11). - _R. J. Mathar_, Mar 22 2011 %F A001781 a(n) + a(n+1) = A000582(n+10). - _R. J. Mathar_, Jan 06 2021 %p A001781 A001781 := proc(n) 1/2903040*(2*n+11) *(2*n^8 +88*n^7 +1616*n^6 +16060*n^5 +93656*n^4 +324808*n^3 +646236*n^2 +663894*n +263655)+(-1)^n/1024 ; end proc: %p A001781 seq(A001781(n),n=0..50) ; # _R. J. Mathar_, Mar 22 2011 %o A001781 (Magma) [1/2903040*(2*n+11) *(2*n^8 +88*n^7 +1616*n^6 +16060*n^5 +93656*n^4 +324808*n^3 +646236*n^2 +663894*n +263655)+(-1)^n/1024 : n in [0..30]]; // _Vincenzo Librandi_, Oct 08 2011 %o A001781 (Magma) %o A001781 R<x>:=PowerSeriesRing(Integers(), 50); %o A001781 Coefficients(R!( 1/((1+x)*(1-x)^10) )); // _G. C. Greubel_, Apr 20 2025 %o A001781 (PARI) Vec(1/(1+x)/(1-x)^10+O(x^99)) \\ _Charles R Greathouse IV_, Apr 18 2012 %o A001781 (SageMath) %o A001781 def A001781_list(prec): %o A001781 P.<x> = PowerSeriesRing(ZZ, prec) %o A001781 return P( 1/((1+x)*(1-x)^10) ).list() %o A001781 print(A001781_list(50)) # _G. C. Greubel_, Apr 20 2025 %Y A001781 Cf. A000582. %Y A001781 Tenth column of A112465. %K A001781 nonn,easy %O A001781 0,2 %A A001781 _N. J. A. Sloane_