This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001798 M2149 N0856 #27 Apr 24 2025 08:50:24 %S A001798 2,28,182,4760,31654,428260,2941470,163761840,1152562950,16381761396, %T A001798 117402623338,3390322778024,24634522766126,360043025043380, %U A001798 2644479279859438,312191499849352032,2312918756095439814,34398444513178377492 %N A001798 Coefficients of Legendre polynomials. %C A001798 Coefficient of Legendre_3(x) when x^n is written in term of Legendre polynomials. - _Sean A. Irvine_, Nov 28 2012 %D A001798 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001798 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001798 G. C. Greubel, <a href="/A001798/b001798.txt">Table of n, a(n) for n = 1..830</a> %H A001798 H. E. Salzer, <a href="http://dx.doi.org/10.1090/S0025-5718-1948-0023123-5">Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials</a>, Math. Comp., 3 (1948), 16-18. %F A001798 a(n) = (14*n/((2*n+3)*(2*n+5)))*numerator(binomial(4*n+2, 2*n+1)/2^(4*n)). - _Sean A. Irvine_, Nov 28 2012 %p A001798 a:=n->(14*n/((2*n+3)*(2*n+5)))*numer(binomial(4*n+2,2*n+1)/2^(4*n)); # _Sean A. Irvine_, Nov 28 2012 %t A001798 A001798[n_]:= With[{B=Binomial}, 14*B[n+2,3]*Numerator[B[4*n+2,2*n+1]/2^(4*n) ]/B[2*n+5,4]]; %t A001798 Table[A001798[n], {n,30}] (* _G. C. Greubel_, Apr 23 2025 *) %o A001798 (Magma) %o A001798 B:=Binomial; %o A001798 A001798:= func< n | 14*B(n+2,3)*Numerator(B(4*n+2,2*n+1)/2^(4*n))/B(2*n+5,4) >; %o A001798 [A001798(n): n in [1..30]]; // _G. C. Greubel_, Apr 23 2025 %o A001798 (SageMath) %o A001798 b=binomial %o A001798 def A001798(n): return 14*b(n+2,3)*numerator(b(4*n+2,2*n+1)/2^(4*n) )//b(2*n+5,4) %o A001798 print([A001798(n) for n in range(1,31)]) # _G. C. Greubel_, Apr 23 2025 %Y A001798 Cf. A001796. %K A001798 nonn %O A001798 1,1 %A A001798 _N. J. A. Sloane_ %E A001798 More terms from _Sean A. Irvine_, Nov 28 2012