This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001806 M5165 N2242 #35 Sep 08 2022 08:44:29 %S A001806 24,600,10800,176400,2822400,45722880,762048000,13172544000, %T A001806 237105792000,4452319872000,87265469491200,1784975512320000, %U A001806 38079477596160000,846536078868480000,19591263539527680000,471496409184632832000,11787410229615820800000 %N A001806 a(n) = n! * binomial(n,4). %C A001806 Coefficients of Laguerre polynomials. %D A001806 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799. %D A001806 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001806 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001806 T. D. Noe, <a href="/A001806/b001806.txt">Table of n, a(n) for n = 4..100</a> %H A001806 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001806 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a> %F A001806 E.g.f.: x^4/(1-x)^5. - _Geoffrey Critzer_, Aug 19 2012 %p A001806 G(x):=x^4/(1-x)^5: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=4..18); # _Zerinvary Lajos_, Apr 01 2009 %t A001806 Table[n! Binomial[n, 4], {n, 4, 20}] (* _T. D. Noe_, Aug 10 2012 *) %o A001806 (PARI) for(n=4,30, print1(n!*binomial(n,4), ", ")) \\ _G. C. Greubel_, May 17 2018 %o A001806 (Magma) [Factorial(n)*Binomial(n,4): n in [4..30]]; // _G. C. Greubel_, May 17 2018 %Y A001806 A column of triangle A021012. %K A001806 nonn %O A001806 4,1 %A A001806 _N. J. A. Sloane_ %E A001806 More terms from _Ralf Stephan_, Jan 09 2004