This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001812 M5257 N2289 #49 Dec 27 2024 03:49:13 %S A001812 1,36,882,18816,381024,7620480,153679680,3161410560,66784798080, %T A001812 1454424491520,32724551059200,761589551923200,18341615042150400, %U A001812 457129482588979200,11787410229615820800,314330939456421888000,8663746518767628288000,246661959710796005376000 %N A001812 Coefficients of Laguerre polynomials. %D A001812 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799. %D A001812 Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519. %D A001812 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001812 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001812 T. D. Noe, <a href="/A001812/b001812.txt">Table of n, a(n) for n = 5..100</a> %H A001812 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001812 Cornelius Lanczos, <a href="/A002457/a002457.pdf">Applied Analysis</a> (Annotated scans of selected pages) %H A001812 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>. %F A001812 a(n) = (-1)*A021009(n, 5), n >= 5. %F A001812 a(n) = ((n!/5!)^2)/(n-5)!, n >= 5. %F A001812 If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,5,-6), (n>=5). - _Milan Janjic_, Mar 01 2009 %F A001812 From _Amiram Eldar_, May 02 2022: (Start) %F A001812 Sum_{n>=5} 1/a(n) = 375*(gamma - Ei(1)) + 150*e + 175/2, where e = A001113, gamma = A001620, and Ei(1) = A091725. %F A001812 Sum_{n>=5} (-1)^(n+1)/a(n) = 5225*(gamma - Ei(-1)) - 3100/e - 18125/6, where Ei(-1) = -A099285. (End) %e A001812 G.f. = x^5 + 36*x^6 + 882*x^7 + 18816*x^8 + 381024*x^9 + 7620480*x^10 + ... %t A001812 Table[((n!/5!)^2)/(n-5)!, {n, 5, 20}] (* _T. D. Noe_, Aug 10 2012 *) %o A001812 (Sage) [factorial(m) * binomial(m, 5) / 120 for m in range(5,23)] # _Zerinvary Lajos_, Jul 05 2008 %o A001812 (PARI) for(n=5,20, print1(((n!/5!)^2)/(n-5)!, ", ")) \\ _G. C. Greubel_, May 11 2018 %o A001812 (Magma) [((Factorial(n)/Factorial(5))^2)/Factorial(n-5): n in [5..20]]; // _G. C. Greubel_, May 11 2018 %Y A001812 Cf. A001113, A001620, A021009, A091725, A099285. %K A001812 nonn %O A001812 5,2 %A A001812 _N. J. A. Sloane_