This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001816 M4862 N2078 #36 Jul 27 2025 15:06:21 %S A001816 12,120,720,3360,13440,48384,161280,506880,1520640,4392960,12300288, %T A001816 33546240,89456640,233963520,601620480,1524105216,3810263040, %U A001816 9413591040,23011000320,55710842880,133706022912,318347673600,752458137600,1766640844800,4122161971200 %N A001816 Coefficients of x^n in Hermite polynomial H_{n+4}. %D A001816 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. %D A001816 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001816 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001816 T. D. Noe, <a href="/A001816/b001816.txt">Table of n, a(n) for n = 0..500</a> %H A001816 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A001816 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>. %H A001816 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (10,-40,80,-80,32). %F A001816 a(n) = 12*A003472(n+4) = A060821(4+n, n). %F A001816 G.f.: 12 ( 1 - 2 x )^(-5). %F A001816 From _Amiram Eldar_, May 06 2022: (Start) %F A001816 Sum_{n>=0} 1/a(n) = 5/9 - 2*log(2)/3. %F A001816 Sum_{n>=0} (-1)^n/a(n) = 18*log(3/2) - 65/9. (End) %t A001816 Table[Coefficient[HermiteH[n + 4, x], x, n], {n, 0, 25}] (* _T. D. Noe_, Aug 10 2012 *) %t A001816 LinearRecurrence[{10,-40,80,-80,32},{12,120,720,3360,13440},30] (* _Harvey P. Dale_, Jul 27 2025 *) %o A001816 (PARI) a(n) = polcoeff(polhermite(n+4), n); \\ _Michel Marcus_, May 06 2022 %Y A001816 Cf. A003472, A060821. %K A001816 nonn,easy %O A001816 0,1 %A A001816 _N. J. A. Sloane_, _Simon Plouffe_ %E A001816 More terms from Larry Reeves (larryr(AT)acm.org), Jan 29 2001