This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001862 M1773 N0702 #38 May 19 2024 14:02:59 %S A001862 1,1,2,7,26,111,562,3151,19252,128449,925226,7125009,58399156, %T A001862 507222535,4647051970,44747776651,451520086208,4761032807937, %U A001862 52332895618066,598351410294193,7102331902602676,87365859333294151,1111941946738682522,14621347433458883187 %N A001862 Number of forests of least height with n nodes. %C A001862 From _Gus Wiseman_, Feb 14 2024: (Start) %C A001862 Also the number of minimal loop-graphs covering n vertices. This is the minimal case of A322661. For example, the a(0) = 1 through a(3) = 7 loop-graphs are (loops represented as singletons): %C A001862 {} {1} {12} {1-23} %C A001862 {1-2} {2-13} %C A001862 {3-12} %C A001862 {12-13} %C A001862 {12-23} %C A001862 {13-23} %C A001862 {1-2-3} %C A001862 (End) %D A001862 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. See (3.3.7): number of ways to cover the complete graph K_n with star graphs. %D A001862 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001862 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001862 T. D. Noe, <a href="/A001862/b001862.txt">Table of n, a(n) for n = 0..100</a> %H A001862 John Riordan, <a href="https://doi.org/10.1016/S0021-9800(68)80033-X">Forests of labeled trees</a>, J. Combin. Theory, 5 (1968), 90-103. %H A001862 John Riordan, <a href="/A001861/a001861.pdf">Letter to N. J. A. Sloane, Oct. 1970</a> %H A001862 John Riordan and N. J. A. Sloane, <a href="/A003471/a003471_1.pdf">Correspondence, 1974</a> %F A001862 E.g.f.: exp(x*(exp(x)-x/2)). %F A001862 Binomial transform of A053530. - _Gus Wiseman_, Feb 14 2024 %t A001862 Range[0, 20]! CoefficientList[Series[Exp[x Exp[x] - x^2/2], {x, 0, 20}], x] (* _Geoffrey Critzer_, Mar 13 2011 *) %t A001862 fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]]; %t A001862 Table[Length@fasmin[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&]],{n,0,4}] (* _Gus Wiseman_, Feb 14 2024 *) %Y A001862 The connected case is A000272. %Y A001862 Without loops we have A053530, minimal case of A369191. %Y A001862 This is the minimal case of A322661. %Y A001862 A000666 counts unlabeled loop-graphs, covering A322700. %Y A001862 A006125 counts simple graphs; also loop-graphs if shifted left. %Y A001862 A006129 counts covering graphs, unlabeled A002494. %Y A001862 A054548 counts graphs covering n vertices with k edges, with loops A369199. %Y A001862 Cf. A000085, A000169, A003465, A062740, A066383, A133686, A368597. %K A001862 nonn %O A001862 0,3 %A A001862 _N. J. A. Sloane_ %E A001862 Formula and more terms from _Vladeta Jovovic_, Mar 27 2001