cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001869 Number of n-bead necklaces with 5 colors.

This page as a plain text file.
%I A001869 M3860 N1582 #76 Feb 16 2025 08:32:24
%S A001869 1,5,15,45,165,629,2635,11165,48915,217045,976887,4438925,20346485,
%T A001869 93900245,435970995,2034505661,9536767665,44878791365,211927736135,
%U A001869 1003867701485,4768372070757,22706531350485,108372083629275,518301258916445
%N A001869 Number of n-bead necklaces with 5 colors.
%C A001869 From _Richard L. Ollerton_, May 07 2021: (Start)
%C A001869 Here, as in A000031, turning over is not allowed.
%C A001869 (1/n) * Dirichlet convolution of phi(n) and 5^n, n>0. (End)
%D A001869 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 162.
%D A001869 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001869 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A001869 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).
%H A001869 T. D. Noe, <a href="/A001869/b001869.txt">Table of n, a(n) for n=0..200</a>
%H A001869 Joscha Diehl, Rosa Preiß, and Jeremy Reizenstein, <a href="https://arxiv.org/abs/2412.19670">Conjugation, loop and closure invariants of the iterated-integrals signature</a>, arXiv:2412.19670 [math.RA], 2024. See p. 21.
%H A001869 E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.
%H A001869 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=5">Encyclopedia of Combinatorial Structures 5</a>
%H A001869 Juhani Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland, <a href="https://arxiv.org/abs/1605.03319">On cardinalities of k-abelian equivalence classes</a>, arXiv preprint arXiv:1605.03319 [math.CO], 2016.
%H A001869 J. Riordan, <a href="/A001867/a001867.pdf">Letter to N. J. A. Sloane, Jul. 1978</a>
%H A001869 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Necklace.html">Necklace.</a>
%H A001869 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%F A001869 a(n) = (1/n)*Sum_{d|n} phi(d)*5^(n/d), n > 0.
%F A001869 G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 5*x^n)/n. - _Herbert Kociemba_, Nov 01 2016
%F A001869 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 5^gcd(n,k). - _Ilya Gutkovskiy_, Apr 17 2021
%F A001869 a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 5^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - _Richard L. Ollerton_, May 07 2021
%t A001869 CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-5*x^i]/i,{i,1,mx}],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 01 2016 *)
%t A001869 k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* _Robert A. Russell_, Sep 21 2018 *)
%o A001869 (PARI) a(n) = if (n, sumdiv(n, d, eulerphi(d)*5^(n/d))/n, 1); \\ _Michel Marcus_, Nov 01 2016
%Y A001869 Column 5 of A075195.
%Y A001869 Cf. A054612.
%K A001869 nonn,easy
%O A001869 0,2
%A A001869 _N. J. A. Sloane_