cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001893 Number of permutations of (1,...,n) having n-3 inversions (n>=3).

Original entry on oeis.org

1, 3, 9, 29, 98, 343, 1230, 4489, 16599, 61997, 233389, 884170, 3366951, 12876702, 49424984, 190297064, 734644291, 2842707951, 11022366544, 42815701060, 166583279325, 649063995030, 2532267577126, 9891097066760, 38676401680776, 151381995733542, 593053313030007
Offset: 3

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(4)=3  because we have 1243, 1324, and 2134.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-3), n=3..40); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-3}],{n,3,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-4)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014