This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001896 M4403 N1858 #100 Jan 24 2024 09:16:24 %S A001896 1,-1,7,-31,127,-2555,1414477,-57337,118518239,-5749691557, %T A001896 91546277357,-1792042792463,1982765468311237,-286994504449393, %U A001896 3187598676787461083,-4625594554880206790555,16555640865486520478399,-22142170099387402072897 %N A001896 Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4). %C A001896 |A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - _David Callan_, Aug 27 2014 %C A001896 See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - _Peter Bala_, Jul 18 2013 %D A001896 H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187. %D A001896 S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. %D A001896 N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458. %D A001896 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3. %D A001896 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001896 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001896 Hector Blandin and Rafael Diaz, <a href="http://arXiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, arXiv:0708.0809 [math.CO], 2007-2008; Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897. %H A001896 S. A. Joffe, <a href="/A001896/a001896.pdf">Sums of like powers of natural numbers</a>, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes] %H A001896 Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Tsumura/tsumura3.html">On Polycosecant Numbers</a>, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3. %H A001896 D. H. Lehmer, <a href="http://www.jstor.org/stable/1968647">Lacunary recurrence formulas for the numbers of Bernoulli and Euler</a>, Annals Math., 36 (1935), 637-649. %H A001896 N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463] %H A001896 <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a> %F A001896 a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - _Groux Roland_, Nov 10 2009 %F A001896 a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - _Peter Luschny_, Jun 29 2012 %F A001896 E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - _Peter Bala_, Jul 18 2013 %F A001896 a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - _Peter Luschny_, Jul 25 2021 %e A001896 1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n). %e A001896 Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n). %p A001896 seq(numer(bernoulli(2*n, 1/2)), n=0..20); %t A001896 a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* _Jean-François Alcover_, Sep 11 2013 *) %o A001896 (PARI) a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ _Michel Marcus_, Mar 01 2015 %o A001896 (Sage) %o A001896 def A001896_list(len): %o A001896 R, C = [1], [1]+[0]*(len-1) %o A001896 for n in (1..len-1): %o A001896 for k in range(n, 0, -1): %o A001896 C[k] = C[k-1] / (8*k*(2*k+1)) %o A001896 C[0] = -sum(C[k] for k in (1..n)) %o A001896 R.append((C[0]*factorial(2*n)).numerator()) %o A001896 return R %o A001896 A001896_list(18) # _Peter Luschny_, Feb 20 2016 %Y A001896 Cf. A001897 (denominators), A033469, A036280, A062715, A145901. %Y A001896 Cf. A132092-A132099. %K A001896 sign,frac %O A001896 0,3 %A A001896 _N. J. A. Sloane_