This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A001898 M2014 N0749 #25 Jul 25 2022 04:04:49 %S A001898 1,2,12,8,240,96,4032,1152,34560,7680,101376,18432,50319360,7741440, %T A001898 6635520,884736,451215360,53084160,42361159680,4459069440, %U A001898 1471492915200,140142182400,1758147379200,152882380800,417368899584000,33389511966720,15410543984640 %N A001898 Denominators of Bernoulli polynomials B(n)(x). %D A001898 F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.] %D A001898 N. E. Nørlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459. %D A001898 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001898 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001898 N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463] %H A001898 <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a> %F A001898 These Bernoulli polynomials B(s) = B(s)(x) are defined by: B(0) = 1; B(s) = (-x/s)*Sum_{t=1..s} (-1)^t*binomial(s, t)*Bernoulli(t)*B(s-t), where Bernoulli(t) are the usual Bernoulli numbers A027641/A027642. Also B(s)(1) = Bernoulli(s). %e A001898 The Bernoulli polynomials B(0)(x) through B(6)(x) are: %e A001898 1; %e A001898 -(1/2)*x; %e A001898 (1/12)*(3*x-1)*x; %e A001898 -(1/8)*(x-1)*x^2; %e A001898 (1/240)*(15*x^3-30*x^2+5*x+2)*x; %e A001898 -(1/96)*(x-1)*(3*x^2-7*x-2)*x^2; %e A001898 (1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x. %p A001898 B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s,t)*B(t)*b(s-t),t=1..s)); end; [seq(denom(b(n)),n=0..30)]; %t A001898 B[s_] := B[s] = If[s == 0, 1, (-x/s)*Sum[(-1)^t*Binomial[s, t]* %t A001898 BernoulliB[t]*B[s - t], {t, 1, s}]] // Factor; %t A001898 a[n_] := If[n == 0, 1, B[n] // First // Denominator]; %t A001898 Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 24 2022 *) %Y A001898 Cf. A027641, A027642, A100615, A100616, A100655. %K A001898 nonn %O A001898 0,2 %A A001898 _N. J. A. Sloane_ %E A001898 Entry revised Dec 03 2004